Skip to main content
Log in

Finite element analysis of nanowire indentation on a flat substrate

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanowires have attracted tremendous research interests due to their potential applications. Their mechanical properties are critical for the reliability and durability of the nanowire-based devices. Compared to many other characterization techniques, the lateral probing of a nanowire using nanoindentation has the advantage of relatively simple sample preparation. However, the data analysis is difficult due to the complex contact mechanics. In all previous studies, some questionable approximations have been made to proceed with data analysis. In this study, a quantitative physical picture of nanowire lateral probing is proposed, which we believe is the first time in the literature. Three-dimensional finite element analysis (FEA) is performed and compared to a double-contact analytical model in which the two contacts, namely contact 1 (indenter/nanowire) and contact 2 (nanowire/substrate), are considered. Both the FEA and analytical models are for a specific case: an elastic spherical indention of a GaN nanowire on a Si substrate. We find that contact 1 cannot be well approximated by a Hertzian elliptical contact as assumed in many studies. We also find a large contact deformation at contact 2, which has been ignored in almost all previous studies. Finally, the adhesion condition and nanowire-receding at contact 2 are found to have insignificant effects on the data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. D.J. Sirbuly, A. Tao, M. Law, R. Fan, and P. Yang: Multifunctional nanowire evanescent wave optical sensors Adv. Mater. 19, 61 (2007).

    Article  CAS  Google Scholar 

  2. Y.J. Choi, I.S. Hwang, J.G. Park, K.J. Choi, J.H. Park, and J.H. Lee: Novel fabrication of an SnO2 nanowire gas sensor with high sensitivity Nanotechnology 19, 095508 (2008).

    Article  Google Scholar 

  3. V.V. Dobrokhotov, M.M. Yazdanpanah, S. Pabba, A. Safir, and R.W. Cohn: Visual force sensing with flexible nanowire buckling springs Nanotechnology 19, 035502 (2008).

    Article  Google Scholar 

  4. M.W. Li, R.B. Bhiladvala, T.J. Morrow, J.A. Sioss, K.K. Lew, J.M. Redwing, C.D. Keating, and T.S. Mayer: Bottom-up assembly of large-area nanowire resonator arrays Nat. Nanotechnol. 3, 88 (2008).

    Article  CAS  Google Scholar 

  5. A.B.H. Tay and J.T.L. Thong: High-resolution nanowire atomic force microscope probe grown by a field-emission induced process Appl. Phys. Lett. 84, 5207 (2004).

    Article  CAS  Google Scholar 

  6. S.P. Bao and S.C. Tjong: Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature Mater. Sci. Eng, A 485, 508 (2008).

    Article  Google Scholar 

  7. P.M. Ajayan, L.S. Schadler, and P.V. Braun: Nanocomposite Science and Technology (Wiley-VCH, Weinheim, 2003).

    Book  Google Scholar 

  8. X.D. Li, P. Nardi, C.W. Baek, J.M. Kim, and Y.K. Kim: Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope J. Micromech. Microeng. 15, 551 (2005).

    Article  CAS  Google Scholar 

  9. G. Feng, W.D. Nix, Y. Yoon, and C.J. Lee: A study of the mechanical properties of nanowires using nanoindentation J. Appl. Phys. 99, 074304 (2006).

    Article  Google Scholar 

  10. X.D. Li, H.S. Gao, C.J. Murphy, and K.K. Caswell: Nanoindentation of silver nanowires Nano Lett. 3, 1495 (2003).

    Article  CAS  Google Scholar 

  11. M.F. Yu, T. Kowalewski, and R.S. Ruoff: Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force Phys. Rev. Lett. 85, 1456 (2000).

    Article  CAS  Google Scholar 

  12. M.-J. Minaryolandan and M.F. Yu: Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation J. Appl. Phys. 103, 073516 (2008).

    Article  Google Scholar 

  13. H. Ni, X.D. Li, G.S. Cheng, and R. Klie: Elastic modulus of single-crystal GaN nanowires J. Mater. Res. 21, 2882 (2006).

    Article  CAS  Google Scholar 

  14. T.-H. Fang and W.-J. Chang: Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning-probe microscopy Physica B 352, 190 (2004).

    Article  CAS  Google Scholar 

  15. S.X. Mao, M. Zhao, and Z.L. Wang: Nanoscale mechanical behavior of individual semiconducting nanobelts Appl. Phys. Lett. 83, 993 (2003).

    Article  CAS  Google Scholar 

  16. E.P.S. Tan and C.T. Lim: Nanoindentation study of nanofibers Appl. Phys. Lett. 87, 123106 (2005).

    Article  Google Scholar 

  17. N. Lonnroth, C.L. Muhlstein, C. Pantano, and Y. Yue: Nanoindentation of glass wool fibers J. Non-Cryst. Solids 354, 3887 (2008).

    Article  CAS  Google Scholar 

  18. H. Ni and X.D. Li: Young’s modulus of ZnO nanobelts measured using atomic force microscopy and nanoindentation techniques Nanotechnology 17, 3591 (2006).

    Article  CAS  Google Scholar 

  19. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  20. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, New York, 1987).

    Google Scholar 

  21. Contact Technology Guide, Vol. 12.1 (ANSYS, Inc, Canonsburg, PA, 2009).

  22. J. Castillo and J.R. Barber: Lateral contact of slender prismatic bodies Proc. Math. Phys. Eng. Sci. 453, 2397 (1997).

    Article  Google Scholar 

  23. Z.H. Xu and X.D. Li: Sample size effect on nanoindentation of micro-/nanostructures Acta Mater. 54, 1699 (2006).

    Article  CAS  Google Scholar 

  24. G.M. Pharr, W.C. Oliver, and F.R. Brotzen: On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation J. Mater. Res. 7, 613 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support from a Keystone Innovation Starter Kit (KISK) grant from the Pennsylvania Department of Community and Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askari, D., Feng, G. Finite element analysis of nanowire indentation on a flat substrate. Journal of Materials Research 27, 586–591 (2012). https://doi.org/10.1557/jmr.2011.420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.420

Navigation