Skip to main content
Log in

Microcompression study of Al-Nb nanoscale multilayers

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Microcompression tests were performed on the Al/Nb multilayers of incoherent interfaces with the layer thicknesses of 5 nm Al/5 nm Nb and 50 nm Al/50 nm Nb. The Al-Nb multilayers showed increase in strength as the layer thickness was reduced; the average flow stresses at 5% plastic strain from the 5 nm Al/5 nm Nb and 50 nm Al/50 nm Nb layer thickness specimens were determined to be 2.1 GPa and 1.4 GPa respectively. The results from this Al-Nb microcompression study were compared with those of the previous report on Cu-Nb multilayer microcompression results that indicated that the flow stresses of the Al-Nb multilayer are lower than those of Cu-Nb with the same bilayer spacing. The observed difference in strength was attributed to a potential difference in the interfacial strength of the two incoherent multilayer systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. P.M. Anderson and Z. Li: A Peierls analysis of the critical stress for transmission of a screw dislocation across a coherent, sliding interface Mater. Sci. Eng. 319, 182 (2001).

    Article  Google Scholar 

  2. I.N. Mastorakos, H.M. Zbib, and D.F. Bahr: Deformation mechanisms and strength in nanoscale multilayer metallic composites with coherent and incoherent interfaces Appl. Phys. Lett. 94, 173114 (2009).

    Article  Google Scholar 

  3. Y.C. Wang, A. Misra, and R.G. Hoagland: Fatigue properties of nanoscale Cu/Nb multilayers Scr. Mater. 54, 1593 (2006).

    Article  CAS  Google Scholar 

  4. N.A. Mara, D. Bhattacharyya, J.P. Hirth, P. Dickerson, and A. Misra: Mechanism for shear banding in nanolayered composites Appl. Phys. Lett. 97, 021909 (2010).

    Article  Google Scholar 

  5. N.A. Mara, D. Bhattacharyya, P. Dickerson, R.G. Hoagland, and A. Misra: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites Appl. Phys. Lett. 92, 231901 (2008).

    Article  Google Scholar 

  6. A. Misra, M. Verdier, Y.C. Lu, H. Kung, T.E. Mitchell, M. Nastasi, and J.D. Embury: Structure and mechanical properties of Cu-X (X 5 Nb, Cr, Ni) nanolayered composites Scr. Mater. 39, 555 (1998).

    Article  CAS  Google Scholar 

  7. A. Misra, R.G. Hoagland, and H. Kung: Thermal stability of self-supported nanolayered Cu/Nb film Philos. Mag. 84, 1021 (2004).

    Article  CAS  Google Scholar 

  8. H. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  9. A. Misra, J.P. Hirth, R.G. Hoagland, J.D. Embury, and H. Kung: Dislocation mechanisms and symmetric slip in rolled nanoscale metallic multilayers Acta Mater. 52, 2387 (2004).

    Article  CAS  Google Scholar 

  10. J. Wang, A. Misra: An overview of interface-dominated deformation mechanisms in metallic multilayers Curr. Opin. Solid State Mater. Sci. 15, 20 (2011).

    Article  CAS  Google Scholar 

  11. P.M. Anderson, J.F. Bingert, A. Misra, and J.P. Hirth: Rolling textures in nanoscale Cu/Nb multilayers Acta Mater. 51, 6059 (2003).

    Article  CAS  Google Scholar 

  12. S.M. Han, M.A. Phillips, and W.D. Nix: Study of strain softening behavior of Al-Al3Sc multilayers using microcompression testing Acta Mater. 57, 4473 (2009).

    Article  CAS  Google Scholar 

  13. M.A. Phillips, B.M. Clemens, and W.D. Nix: A model for dislocation behavior during deformation of Al/Al3Sc (fcc/L12) metallic multilayers Acta Mater. 51, 3157 (2003).

    Article  CAS  Google Scholar 

  14. M.A. Phillips, B.M. Clemens, and W.D. Nix: Microstructure and nanoindentation hardness of Al/Al3Sc multilayers Acta Mater. 51, 3171 (2003).

    Article  CAS  Google Scholar 

  15. A. Misra, J.P. Hirth, and R.G. Hoagland: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites Acta Mater. 53, 4817 (2005).

    Article  CAS  Google Scholar 

  16. A.S. Budiman, N. Li, Q. Wei, J.K. Baldwin, J. Xiong, H. Luo, D. Trugman, Q.X. Jia, N. Tamura, M. Kunz, K. Chen, and A. Misra: Growth and structural characterization of epitaxial Cu/Nb multilayers Thin Solid Films 519, 4137 (2011).

    Article  CAS  Google Scholar 

  17. P.M. Anderson and C. Li: Hall-Petch relations for multilayered materials Nanostruct. Mater. 5, 349 (1995).

    Article  CAS  Google Scholar 

  18. L.H. Friedman and D.C. Chrzan: Scaling theory of the Hall-Petch relation for multilayers Phys. Rev. Lett. 81, 27151998 (1998).

    Article  Google Scholar 

  19. C.S. Pande, R.A. Masumura, and R.W. Armstrong: Pile-up based Hall-Petch relation for nanoscale materials Nanostruct. Mater. 2, 323 (1993).

    Article  CAS  Google Scholar 

  20. H.W. Liu and Q. Gao: The equivalence between dislocation pile-ups and cracks Theor. Appl. Fract. Mech. 12, 195 (1990).

    Article  Google Scholar 

  21. R.G. Hoagland, T.E. Mitchell, J.P. Hirth, and H. Kung: On the strengthening effects of interfaces in multilayer fcc metallic composites Philos. Mag. 82, 643 (2002).

    CAS  Google Scholar 

  22. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra: Atomistic modeling of the interaction of glide dislocations with “weak” interfaces Acta Mater. 56, 5685 (2008).

    Article  CAS  Google Scholar 

  23. W.D. Nix: Yielding and strain hardening of thin metal films on substrates Scr. Mater. 39, 545 (1998).

    Article  CAS  Google Scholar 

  24. R.G. Hoagland, R.J. Kurtz, and C.H. Henager Jr.: Slip resistance of interfaces and the strength of metallic multilayer composites Scr. Mater. 50, 775 (2004).

    Article  CAS  Google Scholar 

  25. R.G. Hoagland, J.P. Hirth, and A. Misra: On the role of weak interfaces in blocking slip in nanoscale layered composites Philos. Mag. 86, 3537 (2006).

    Article  CAS  Google Scholar 

  26. S.M. Han, R. Saha, W.D. Nix: Determining hardness of thin films in elastically mismatched film-on-substrate systems using nanoindentation Acta Mater. 54, 1571 (2006).

    Article  CAS  Google Scholar 

  27. S.M. Han, R. Saha, R. Banerjee, G.B. Viswanathan, B.M. Clemens, and W.D. Nix: Combinatorial studies of mechanical properties of Ti-Al thin films using nanoindentation Acta Mater. 53, 2059 (2005).

    Article  CAS  Google Scholar 

  28. R. Saha and W.D. Nix: Effects of the substrate on the determination of thin film mechanical properties by nanoindentation Acta Mater. 50, 23 (2002).

    Article  CAS  Google Scholar 

  29. W.D. Nix and H. Gao: Indentation size effects in crystalline materials: A low for strain gradient plasticity J. Mech. Phys. Solids 46, 411 (1998).

    Article  CAS  Google Scholar 

  30. H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity-I. Theory J. Mech. Phys. Solids 47, 1239 (1999).

    Article  Google Scholar 

  31. Y. Huanga, H. Gao, W.D. Nix, and J.W. Hutchinson: Mechanism-based strain gradient plasticity-II. Analysis J. Mech. Phys. Solids 48, 99 (2000).

    Article  Google Scholar 

  32. Y. Huang, Z. Xue, H. Gao, W.D. Nix, and Z.C. Xia: A study of microindentation hardness tests by mechanism-based strain gradient plasticity, J. Mater. Res. 15, 1786 (2000).

    Article  CAS  Google Scholar 

  33. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity Science 305, 986 (2004).

    Article  CAS  Google Scholar 

  34. J. Wang, R.G. Hoagland, J.P. Hirth, and A. Misra: Atomistic simulations of the shear strength and sliding mechanisms of copper-niobium interfaces Acta Mater. 56, 3109 (2008).

    Article  CAS  Google Scholar 

  35. S.M. Han, T.-G. Bozorgrayeli, J.R. Groves, and W.D. Nix: Size effects on strength and plasticity of vanadium nanopillars Scr. Mater. 63, 1153 (2010).

    Article  CAS  Google Scholar 

  36. S.M. Han, C. Xie, and Y. Cui: Microcompression of fused silica nanopillars synthesized using reactive ion etching Nanosci. Nanotechnol. Lett. 2, 1 (2011).

    Google Scholar 

  37. E.G. Fu, N. Li, A. Misra, R.G. Hoagland, H. Wang, and X. Zhang: Mechanical properties of sputtered Cu/V and Al/Nb multilayer films Mater. Sci. Eng. A 493, 283 (2008).

    Article  Google Scholar 

  38. D. Tabor: The Hardness of Metal (Clarendon Press, Oxford, United Kingdom, 1987) p. 52.

    Google Scholar 

  39. K.-Z. Yuhang, J.D. Embury, K. Han, and A. Misra: Transmission electron microscopy investigation of the atomic structure of interfaces in nanoscale Cu-Nb multilayers Philos. Mag. 88, 2559 (2008).

    Article  Google Scholar 

  40. N. Li, J. Wang, J.Y. Huang, A. Misra, and X. Zhang: In situ TEM observations of room temperature dislocation climb at interfaces in nanolayered Al/Nb composites Scr. Mater. 63, 363 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research at KAIST was supported by National Research Foundation of Korea under the Contract Nos. 4.0007357, N01110283, and the KINC grant at KAIST under the Contract No. N10110033. LANL authors acknowledge support from DOE, Office of Science, Office of Basic Energy Sciences, Division of Materials Science and Engineering. A.S.B. is supported by the Director, Los Alamos National Laboratory (LANL), under the Director’s Postdoctoral Research Fellowship program (LDRD/X93V).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Min Han.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, Y., Suriadiudiman, A.B., Baldwin, J. et al. Microcompression study of Al-Nb nanoscale multilayers. Journal of Materials Research 27, 592–598 (2012). https://doi.org/10.1557/jmr.2011.414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.414

Navigation