Skip to main content
Log in

Tuning the functional interface of carbon nanotubes by electrochemistry: Toward nanoscale chemical sensors and biosensors

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ability to tune the functional interface of single-walled carbon nanotubes in a versatile manner is key to the success of deploying them as an active material in chemical and biological sensors. Here we present an overview of our device strategies demonstrating the use of controlled electrochemical functionalization to tune this interface by bringing in different functionalities ranging from metallic nanoparticles to biomolecules onto the nanotube surface. The extent of such a functionalization is tunable, providing us with a good control over sensitivity, selectivity, and detection limit of the realized sensors. Moreover, the sensor mechanisms have been analyzed. Taken together the methods and results outlined here constitute a general framework for the rational design of nanoscale field-effect-based chemical sensors and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus: Carbon Nanotubes: Advanced Topics in Synthesis, Structure, Properties and Applications (Springer, Berlin Heidelberg, Germany 2008), pp. 1, 13–61.

    Book  Google Scholar 

  2. M. Meyyappan: Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, FL, 2005), pp. 163–278.

    Google Scholar 

  3. O’M.J. connell: Carbon Nanotubes: Properties, Applications and Commercialization, 2nd ed. (CRC Press, Boca Raton, FL, 2012), pp. 1–32.

    Google Scholar 

  4. A. Merkoci: Biosensing Using Nanomaterials, The Wiley Series in Nanoscience and Nanotechnology (John Wiley & Sons, NJ, 2009), pp. 3–30.

    Google Scholar 

  5. J. Wang and Y. Lin: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Analyt. Chem. 27, 619 (2008).

    Article  CAS  Google Scholar 

  6. T. Kurkina and K. Balasubramanian: Towards in vitro molecular diagnostics using nanostructures. Cell. Mol. Life Sci. (2011) DOI: 10.1007/s00018-011-0855-7.

    Google Scholar 

  7. H.-C. Wu, X. Chang, L. Liu, F. Zhao, and Y. Zhao: Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem. 20, 1036 (2010).

    Article  CAS  Google Scholar 

  8. S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, and R.C. Haddon: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).

    Article  CAS  Google Scholar 

  9. K. Balasubramanian and M. Burghard: Chemically functionalized carbon nanotubes. Small 1, 180 (2005).

    Article  CAS  Google Scholar 

  10. J.J. Davis, K.S. Coleman, B.R. Azamian, C.B. Bagshaw, and M.L.H. Green: Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9, 3732 (2009).

    Article  CAS  Google Scholar 

  11. V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, and A. Hirsch: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).

    Article  CAS  Google Scholar 

  12. C.E. Banks, T.J. Davies, G.G. Wildgoose, and R.G. Compton: Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829 (2005).

    Article  CAS  Google Scholar 

  13. M. Burghard: Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf. Sci. Rep. 58, 1 (2005).

    CAS  Google Scholar 

  14. J.B. Cui, M. Burghard, and K. Kern: Reversible sidewall osmylation of individual carbon nanotubes. Nano Lett. 3, 613 (2003).

    Article  CAS  Google Scholar 

  15. M.J. Moghaddam, S. Taylor, M. Gao, S.M. Huang, L.M. Dai, and M.J. McCall: Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4, 89 (2004).

    Article  CAS  Google Scholar 

  16. J.L. Bahr and J.M. Tour: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952 (2002).

    Article  CAS  Google Scholar 

  17. S.E. Kooi, U. Schlecht, M. Burghard, and K. Kern: Electrochemical modification of single carbon nanotubes. Angew. Chem. Int. Ed. 41, 1353 (2002).

    Article  CAS  Google Scholar 

  18. K. Balasubramanian and M. Burghard: Electrochemically functionalized carbon nanotubes for device applications. J. Mater. Chem. 18, 3071 (2008).

    Article  CAS  Google Scholar 

  19. X. Peng and S.S. Wong: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).

    Article  CAS  Google Scholar 

  20. A. Maroto, K. Balasubramanian, M. Burghard, and K. Kern: Functionalized metallic carbon nanotube devices for pH sensing. ChemPhysChem 8, 220 (2007).

    Article  CAS  Google Scholar 

  21. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, and H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998).

    Article  CAS  Google Scholar 

  22. H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, and H. Dai: Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627 (1999).

    Article  CAS  Google Scholar 

  23. L. Rispal and U. Schwalke: Large-scale in situ fabrication of voltage-programmable dual-layer high-K dielectric carbon nanotube memory devices with high On/Off ratio. IEEE Electron Device Lett. 29, 1349 (2008).

    Article  CAS  Google Scholar 

  24. T.W. Ebbesen and P.M. Ajayan: Large scale synthesis of carbon nanotubes. Nature 358, 220 (1992).

    Article  CAS  Google Scholar 

  25. M. Terrones, N. Grobert, J.P. Zhang, H. Terrones, J. Olivares, W.K. Hsu, J.P. Hare, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton: Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem. Phys. Lett. 285, 299 (1998).

    Article  CAS  Google Scholar 

  26. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49 (1995).

    Article  CAS  Google Scholar 

  27. M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, and R.E. Smalley: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800 (2001).

    Article  CAS  Google Scholar 

  28. M.C. Hersam: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3, 387 (2008).

    Article  CAS  Google Scholar 

  29. S.J. Tans, A.R.M. Verscheueren, and C. Dekker: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).

    Article  CAS  Google Scholar 

  30. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Avouris Ph.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).

    Article  CAS  Google Scholar 

  31. A. Vlandas, T. Kurkina, A. Ahmad, K. Kern, and K. Balasubramanian: Enzyme-free sugar sensing in microfluidic channels with an affinity-based carbon nanotube sensor. Anal. Chem. 82, 6090 (2010).

    Article  CAS  Google Scholar 

  32. L. An and C.R. Friedrich: Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl. Phys. Lett. 92, 173103 (2008).

    Article  CAS  Google Scholar 

  33. A.H. Monica, S.J. Papadakis, R. Osiander, and M. Paranjape: Wafer-level assembly of carbon nanotube networks using dielectrophoresis. Nanotechnology 19, 085303 (2008).

    Article  CAS  Google Scholar 

  34. R. Saito, G. Dresselhaus, and M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London, United Kingdom, 1998), pp. 59–70.

    Book  Google Scholar 

  35. M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, and N.G. Tassi: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338 (2003).

    Article  CAS  Google Scholar 

  36. T. Tanaka, Y. Urabe, D. Nishide, and H. Kataura: Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl. Phys. Express 2, 125002 (2009).

    Article  CAS  Google Scholar 

  37. A.A. Green and M.C. Hersam: Ultracentrifugation of single-walled nanotubes. Mater. Today 10, 59 (2007).

    Article  CAS  Google Scholar 

  38. NanoIntegris Inc: High Mobility Semiconductor Inks. http://www.nanointegris.com

  39. M. Ganzhorn, A. Vijayaraghavan, S. Dehm, F. Hennrich, A.A. Green, M. Fichtner, A. Voigt, M. Rapp, von H. Loehneysen, M.C. Hersam, M.M. Kappes, and R. Krupke: Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670 (2011).

    Article  CAS  Google Scholar 

  40. T. Kurkina, A. Vlandas, A. Ahmad, K. Kern, and K. Balasubramanian: Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 50, 3710 (2011).

    Article  CAS  Google Scholar 

  41. W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193 (2003).

    Article  CAS  Google Scholar 

  42. K. Balasubramanian, E.J.H. Lee, R.T. Weitz, M. Burghard and K. Kern: Carbon nanotube transistors: Chemical functionalization and device characterization. Phys. Status Solidi A 205, 633 (2008).

    Article  CAS  Google Scholar 

  43. I. Heller, J. Kong, K.A. Williams, C. Dekker, and S.G. Lemay: Electrochemistry at single-walled carbon nanotubes: The role of band structure and quantum capacitance. J. Am. Chem. Soc. 128, 7353 (2006).

    Article  CAS  Google Scholar 

  44. K. Balasubramanian, M. Burghard, and K. Kern: Effect of the electronic structure of carbon nanotubes on the selectivity of electrochemical functionalization. Phys. Chem. Chem. Phys. 10, 2256 (2008).

    Article  CAS  Google Scholar 

  45. A.J. Bard and L.R. Faulkner: Electrochemical Methods and Applications (John Wiley & Sons, NJ, 2001), pp. 632–658.

    Google Scholar 

  46. Y. Fan, B.R. Goldsmith, and P.G. Collins: Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906 (2005).

    Article  CAS  Google Scholar 

  47. M. Scolari, A. Mews, N. Fu, A. Myalitsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern: Surface-enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C 112, 391 (2008).

    Article  CAS  Google Scholar 

  48. T.M. Day, P.R. Unwin, N.R. Wilson, and J. Macpherson: Electrochemical templating of metal nanoparticles and nanowires on single-wall carbon nanotube networks. J. Am. Chem. Soc. 127, 10639 (2005).

    Article  CAS  Google Scholar 

  49. G.G. Wildgoose, C.E. Banks, and R.G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small 2, 182 (2006).

    Article  CAS  Google Scholar 

  50. T. Assmus, K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, N. Fu, A. Myalitsin, and A. Mews: Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Appl. Phys. Lett. 90, 173109 (2007).

    Article  CAS  Google Scholar 

  51. U. Schlecht, K. Balasubramanian, M. Burghard, and K. Kern: Electrochemically decorated carbon nanotubes for hydrogen sensing. Appl. Surf. Sci. 235, 8394 (2007).

    Article  CAS  Google Scholar 

  52. K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, and K. Kern: Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes. Adv. Mater. 15, 1515 (2003).

    Article  CAS  Google Scholar 

  53. M. Gao, S. Huang, L. Dai, G. Wallace, R. Gao, and Z. Wang: Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed. 39, 3664 (2000).

    Article  CAS  Google Scholar 

  54. M. Burghard, A. Maroto, K. Balasubramanian, T. Assmus, A. Forment-Aliaga, E.J.H. Lee, R.T. Weitz, M. Scolari, F. Nan, A. Mews and K. Kern: Electrochemically modified single-wall carbon nanotubes. Phys. Status Solidi B 244, 4021 (2007).

    Article  CAS  Google Scholar 

  55. M. Baibarac, I. Baltog, C. Godon, S. Lefrant, and O. Chauvet: Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42, 3143 (2004).

    Article  CAS  Google Scholar 

  56. J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, and J.M. Tour: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001).

    Article  CAS  Google Scholar 

  57. A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffmann, J. Liu, R.E. Smalley, H.H. Hwu, and J.G. Chen: Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 123, 10699 (2001).

    Article  CAS  Google Scholar 

  58. A. Hirsch: Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853 (2002).

    Article  CAS  Google Scholar 

  59. K. Balasubramanian: Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics. Biosens. Bioelectron. 26, 1195 (2010).

    Article  CAS  Google Scholar 

  60. K. Balasubramaniann, R. Sordan, M. Burghard, and K. Kern: A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827 (2004).

    Article  CAS  Google Scholar 

  61. T. Kurkina and K. Balasubramanian: Towards in vitro molecular diagnostics using nanostructure. Cell. Mol. Life Sci. (2011, in press).

    Google Scholar 

  62. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).

    Article  CAS  Google Scholar 

  63. K. Bradley, J.C.P. Gabriel, M. Briman, A. Star, and G. Gruener: Charge transfer from ammonia physisorbed on nanotubes. Phys. Rev. Lett. 91, 213801 (2003).

    Article  CAS  Google Scholar 

  64. F. Lewis: The Palladium-Hydrogen System (Academic Press Inc., MA, 1967), pp. 1–21.

    Google Scholar 

  65. T.D. James, M.D. Phillips, and S. Shinkai: Boronic Acids in Saccharide Recognition (Royal Society of Chemistry Publishing, London, United Kingdom, 2006), pp. 1–33.

    Google Scholar 

  66. I. Heller, A.M. Janssens, J. Mannik, E.D. Minot, S.G. Lemay, and C. Dekker: Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was funded by the German Federal Ministry of Education and Research (BMBF) under the NanoFutur Programme with project ID O3X5516. Funding from the priority programme (DFG-SPP 1121) of the German Research Foundation is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balasubramanian Kannan.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kannan, B., Kurkina, T., Ahmad, A. et al. Tuning the functional interface of carbon nanotubes by electrochemistry: Toward nanoscale chemical sensors and biosensors. Journal of Materials Research 27, 391–402 (2012). https://doi.org/10.1557/jmr.2011.410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.410

Navigation