Abstract
The ability to tune the functional interface of single-walled carbon nanotubes in a versatile manner is key to the success of deploying them as an active material in chemical and biological sensors. Here we present an overview of our device strategies demonstrating the use of controlled electrochemical functionalization to tune this interface by bringing in different functionalities ranging from metallic nanoparticles to biomolecules onto the nanotube surface. The extent of such a functionalization is tunable, providing us with a good control over sensitivity, selectivity, and detection limit of the realized sensors. Moreover, the sensor mechanisms have been analyzed. Taken together the methods and results outlined here constitute a general framework for the rational design of nanoscale field-effect-based chemical sensors and biosensors.
Similar content being viewed by others
References
A. Jorio, G. Dresselhaus, and M.S. Dresselhaus: Carbon Nanotubes: Advanced Topics in Synthesis, Structure, Properties and Applications (Springer, Berlin Heidelberg, Germany 2008), pp. 1, 13–61.
M. Meyyappan: Carbon Nanotubes: Science and Applications (CRC Press, Boca Raton, FL, 2005), pp. 163–278.
O’M.J. connell: Carbon Nanotubes: Properties, Applications and Commercialization, 2nd ed. (CRC Press, Boca Raton, FL, 2012), pp. 1–32.
A. Merkoci: Biosensing Using Nanomaterials, The Wiley Series in Nanoscience and Nanotechnology (John Wiley & Sons, NJ, 2009), pp. 3–30.
J. Wang and Y. Lin: Functionalized carbon nanotubes and nanofibers for biosensing applications. Trends Analyt. Chem. 27, 619 (2008).
T. Kurkina and K. Balasubramanian: Towards in vitro molecular diagnostics using nanostructures. Cell. Mol. Life Sci. (2011) DOI: 10.1007/s00018-011-0855-7.
H.-C. Wu, X. Chang, L. Liu, F. Zhao, and Y. Zhao: Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem. 20, 1036 (2010).
S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, and R.C. Haddon: Chemistry of single-walled carbon nanotubes. Acc. Chem. Res. 35, 1105 (2002).
K. Balasubramanian and M. Burghard: Chemically functionalized carbon nanotubes. Small 1, 180 (2005).
J.J. Davis, K.S. Coleman, B.R. Azamian, C.B. Bagshaw, and M.L.H. Green: Chemical and biochemical sensing with modified single walled carbon nanotubes. Chemistry 9, 3732 (2009).
V. Georgakilas, K. Kordatos, M. Prato, D.M. Guldi, M. Holzinger, and A. Hirsch: Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760 (2002).
C.E. Banks, T.J. Davies, G.G. Wildgoose, and R.G. Compton: Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 7, 829 (2005).
M. Burghard: Electronic and vibrational properties of chemically modified single-wall carbon nanotubes. Surf. Sci. Rep. 58, 1 (2005).
J.B. Cui, M. Burghard, and K. Kern: Reversible sidewall osmylation of individual carbon nanotubes. Nano Lett. 3, 613 (2003).
M.J. Moghaddam, S. Taylor, M. Gao, S.M. Huang, L.M. Dai, and M.J. McCall: Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry. Nano Lett. 4, 89 (2004).
J.L. Bahr and J.M. Tour: Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 12, 1952 (2002).
S.E. Kooi, U. Schlecht, M. Burghard, and K. Kern: Electrochemical modification of single carbon nanotubes. Angew. Chem. Int. Ed. 41, 1353 (2002).
K. Balasubramanian and M. Burghard: Electrochemically functionalized carbon nanotubes for device applications. J. Mater. Chem. 18, 3071 (2008).
X. Peng and S.S. Wong: Functional covalent chemistry of carbon nanotube surfaces. Adv. Mater. 21, 625 (2009).
A. Maroto, K. Balasubramanian, M. Burghard, and K. Kern: Functionalized metallic carbon nanotube devices for pH sensing. ChemPhysChem 8, 220 (2007).
J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, and H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998).
H.T. Soh, C.F. Quate, A.F. Morpurgo, C.M. Marcus, J. Kong, and H. Dai: Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl. Phys. Lett. 75, 627 (1999).
L. Rispal and U. Schwalke: Large-scale in situ fabrication of voltage-programmable dual-layer high-K dielectric carbon nanotube memory devices with high On/Off ratio. IEEE Electron Device Lett. 29, 1349 (2008).
T.W. Ebbesen and P.M. Ajayan: Large scale synthesis of carbon nanotubes. Nature 358, 220 (1992).
M. Terrones, N. Grobert, J.P. Zhang, H. Terrones, J. Olivares, W.K. Hsu, J.P. Hare, A.K. Cheetham, H.W. Kroto, and D.R.M. Walton: Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem. Phys. Lett. 285, 299 (1998).
T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, and R.E. Smalley: Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49 (1995).
M.J. Bronikowski, P.A. Willis, D.T. Colbert, K.A. Smith, and R.E. Smalley: Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study. J. Vac. Sci. Technol. A 19, 1800 (2001).
M.C. Hersam: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3, 387 (2008).
S.J. Tans, A.R.M. Verscheueren, and C. Dekker: Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998).
R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and Avouris Ph.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998).
A. Vlandas, T. Kurkina, A. Ahmad, K. Kern, and K. Balasubramanian: Enzyme-free sugar sensing in microfluidic channels with an affinity-based carbon nanotube sensor. Anal. Chem. 82, 6090 (2010).
L. An and C.R. Friedrich: Real-time gap impedance monitoring of dielectrophoretic assembly of multiwalled carbon nanotubes. Appl. Phys. Lett. 92, 173103 (2008).
A.H. Monica, S.J. Papadakis, R. Osiander, and M. Paranjape: Wafer-level assembly of carbon nanotube networks using dielectrophoresis. Nanotechnology 19, 085303 (2008).
R. Saito, G. Dresselhaus, and M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London, United Kingdom, 1998), pp. 59–70.
M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. Mclean, S.R. Lustig, R.E. Richardson, and N.G. Tassi: DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater. 2, 338 (2003).
T. Tanaka, Y. Urabe, D. Nishide, and H. Kataura: Continuous separation of metallic and semiconducting carbon nanotubes using agarose gel. Appl. Phys. Express 2, 125002 (2009).
A.A. Green and M.C. Hersam: Ultracentrifugation of single-walled nanotubes. Mater. Today 10, 59 (2007).
NanoIntegris Inc: High Mobility Semiconductor Inks. http://www.nanointegris.com
M. Ganzhorn, A. Vijayaraghavan, S. Dehm, F. Hennrich, A.A. Green, M. Fichtner, A. Voigt, M. Rapp, von H. Loehneysen, M.C. Hersam, M.M. Kappes, and R. Krupke: Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670 (2011).
T. Kurkina, A. Vlandas, A. Ahmad, K. Kern, and K. Balasubramanian: Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew. Chem. Int. Ed. 50, 3710 (2011).
W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai: Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3, 193 (2003).
K. Balasubramanian, E.J.H. Lee, R.T. Weitz, M. Burghard and K. Kern: Carbon nanotube transistors: Chemical functionalization and device characterization. Phys. Status Solidi A 205, 633 (2008).
I. Heller, J. Kong, K.A. Williams, C. Dekker, and S.G. Lemay: Electrochemistry at single-walled carbon nanotubes: The role of band structure and quantum capacitance. J. Am. Chem. Soc. 128, 7353 (2006).
K. Balasubramanian, M. Burghard, and K. Kern: Effect of the electronic structure of carbon nanotubes on the selectivity of electrochemical functionalization. Phys. Chem. Chem. Phys. 10, 2256 (2008).
A.J. Bard and L.R. Faulkner: Electrochemical Methods and Applications (John Wiley & Sons, NJ, 2001), pp. 632–658.
Y. Fan, B.R. Goldsmith, and P.G. Collins: Identifying and counting point defects in carbon nanotubes. Nat. Mater. 4, 906 (2005).
M. Scolari, A. Mews, N. Fu, A. Myalitsin, T. Assmus, K. Balasubramanian, M. Burghard, and K. Kern: Surface-enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C 112, 391 (2008).
T.M. Day, P.R. Unwin, N.R. Wilson, and J. Macpherson: Electrochemical templating of metal nanoparticles and nanowires on single-wall carbon nanotube networks. J. Am. Chem. Soc. 127, 10639 (2005).
G.G. Wildgoose, C.E. Banks, and R.G. Compton: Metal nanoparticles and related materials supported on carbon nanotubes: Methods and applications. Small 2, 182 (2006).
T. Assmus, K. Balasubramanian, M. Burghard, K. Kern, M. Scolari, N. Fu, A. Myalitsin, and A. Mews: Raman properties of gold nanoparticle-decorated individual carbon nanotubes. Appl. Phys. Lett. 90, 173109 (2007).
U. Schlecht, K. Balasubramanian, M. Burghard, and K. Kern: Electrochemically decorated carbon nanotubes for hydrogen sensing. Appl. Surf. Sci. 235, 8394 (2007).
K. Balasubramanian, M. Friedrich, C. Jiang, Y. Fan, A. Mews, M. Burghard, and K. Kern: Electrical transport and confocal Raman studies of electrochemically modified individual carbon nanotubes. Adv. Mater. 15, 1515 (2003).
M. Gao, S. Huang, L. Dai, G. Wallace, R. Gao, and Z. Wang: Aligned coaxial nanowires of carbon nanotubes sheathed with conducting polymers. Angew. Chem. Int. Ed. 39, 3664 (2000).
M. Burghard, A. Maroto, K. Balasubramanian, T. Assmus, A. Forment-Aliaga, E.J.H. Lee, R.T. Weitz, M. Scolari, F. Nan, A. Mews and K. Kern: Electrochemically modified single-wall carbon nanotubes. Phys. Status Solidi B 244, 4021 (2007).
M. Baibarac, I. Baltog, C. Godon, S. Lefrant, and O. Chauvet: Covalent functionalization of single-walled carbon nanotubes by aniline electrochemical polymerization. Carbon 42, 3143 (2004).
J.L. Bahr, J. Yang, D.V. Kosynkin, M.J. Bronikowski, R.E. Smalley, and J.M. Tour: Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 123, 6536 (2001).
A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffmann, J. Liu, R.E. Smalley, H.H. Hwu, and J.G. Chen: Oxygen-containing functional groups on single-wall carbon nanotubes: NEXAFS and vibrational spectroscopic studies. J. Am. Chem. Soc. 123, 10699 (2001).
A. Hirsch: Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853 (2002).
K. Balasubramanian: Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics. Biosens. Bioelectron. 26, 1195 (2010).
K. Balasubramaniann, R. Sordan, M. Burghard, and K. Kern: A selective electrochemical approach to carbon nanotube field-effect transistors. Nano Lett. 4, 827 (2004).
T. Kurkina and K. Balasubramanian: Towards in vitro molecular diagnostics using nanostructure. Cell. Mol. Life Sci. (2011, in press).
J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai: Nanotube molecular wires as chemical sensors. Science 287, 622 (2000).
K. Bradley, J.C.P. Gabriel, M. Briman, A. Star, and G. Gruener: Charge transfer from ammonia physisorbed on nanotubes. Phys. Rev. Lett. 91, 213801 (2003).
F. Lewis: The Palladium-Hydrogen System (Academic Press Inc., MA, 1967), pp. 1–21.
T.D. James, M.D. Phillips, and S. Shinkai: Boronic Acids in Saccharide Recognition (Royal Society of Chemistry Publishing, London, United Kingdom, 2006), pp. 1–33.
I. Heller, A.M. Janssens, J. Mannik, E.D. Minot, S.G. Lemay, and C. Dekker: Identifying the mechanism of biosensing with carbon nanotube transistors. Nano Lett. 8, 591 (2008).
Acknowledgments
This project was funded by the German Federal Ministry of Education and Research (BMBF) under the NanoFutur Programme with project ID O3X5516. Funding from the priority programme (DFG-SPP 1121) of the German Research Foundation is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper has been selected as an Invited Feature Paper.
Rights and permissions
About this article
Cite this article
Kannan, B., Kurkina, T., Ahmad, A. et al. Tuning the functional interface of carbon nanotubes by electrochemistry: Toward nanoscale chemical sensors and biosensors. Journal of Materials Research 27, 391–402 (2012). https://doi.org/10.1557/jmr.2011.410
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2011.410