Skip to main content

Advertisement

Log in

Transforming large-scale industrially produced carbon nanotubes to high-performance electrode materials for lithium-ion batteries

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Large-scale industrial production of carbon nanotubes (CNTs) has recently become available, but there are relatively few reports of the investigation of these industrially produced bulk CNTs as potential electrode materials for electrochemical energy storage such as lithium-ion batteries (LIBs). Here, we report our evaluation of the electrochemical performance of the industrially produced CNTs from one manufacturer and our utilization of a kinetically controlled, vapor diffusion synthesis method combined with in-situ carbothermal reduction to homogeneously grow nanocrystalline tin (Sn) particles (~200 nm) in the matrix of the CNTs, yielding a Sn@CNTs composite. After surface coating with a layer of carbon coating (3–4 nm), this composite was transformed to a surface-modified Sn@CNTs composite that exhibited much higher reversible capacity, initial Coulombic efficiency, and rate capacity than the pristine CNTs as anode materials for LIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, New York, 2008), pp. 13, 46.

    Book  Google Scholar 

  2. Bayer MaterialScience: Baytubes®. http://www.baytubes.com/news_and_services/faq.html

  3. B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, and R.P. Raffaelle: Carbon nanotubes for lithium ion batteries. Energy Environ. Sci. 2, 638 (2009).

    Article  CAS  Google Scholar 

  4. G. Lota, K. Fic, and E. Frackowiak: Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci. 4, 1592 (2011).

    Article  CAS  Google Scholar 

  5. S.B. Yang, J.P. Huo, H.H. Song, and X.H. Chen: A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta 53, 2238 (2008).

    Article  CAS  Google Scholar 

  6. I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W.K. Hsu, and H. Touhara: Electrochemical Li insertion in B-doped multiwall carbon nanotubes. J. Electrochem. Soc. 149, A39 (2002).

    Article  CAS  Google Scholar 

  7. S. Kawasaki, T. Hara, Y. Iwai, and Y. Suzuki: Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 62, 2917 (2008).

    Article  CAS  Google Scholar 

  8. X.X. Wang, J.N. Wang, H. Chang, and Y.F. Zhang: Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries. Adv. Funct. Mater. 17, 3613 (2007).

    Article  CAS  Google Scholar 

  9. F. Leroux, K. Metenier, S. Gautier, E. Frackowiak, S. Bonnamy, and F. Beguin: Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes. J. Power Sources 81, 317 (1999).

    Article  Google Scholar 

  10. M.M. Shaijumon and S. Ramaprabhu: Synthesis of carbon nanotubes by pyrolysis of acetylene using alloy hydride materials as catalysts and their hydrogen adsorption studies. Chem. Phys. Lett. 374, 513 (2003).

    Article  CAS  Google Scholar 

  11. H.L. Zhang and D.E. Morse: Kinetically controlled catalytic synthesis of highly dispersed metal-in-carbon composite and its electrochemical behavior. J. Mater. Chem. 19, 9006 (2010).

    Article  Google Scholar 

  12. M. Winter and J.O. Besenhard: Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999).

    Article  CAS  Google Scholar 

  13. J.W. Park, S. Rajendran, and H.S. Kwon: Effects of substrate morphology and ageing on cycle performance of a Sn-anode fabricated by electroplating. J. Power Sources 159, 1409 (2006).

    Article  CAS  Google Scholar 

  14. N.C. Li, C.R. Martin, and B. Scrosati: Nanomaterial-based Li-ion battery electrodes. J. Power Sources 97–98, 240 (2001).

    Article  Google Scholar 

  15. J. Hassoun, G. Derrien, S. Panero, and B. Scrosati: A nanostructured Sn-C composite lithium battery electrode with unique stability and high electrochemical performance. Adv. Mater. 20, 3169 (2008).

    Article  CAS  Google Scholar 

  16. O. Mao, R.L. Turner, I.A. Courtney, B.D. Fredericksen, M.I. Buckett, L.J. Krause, and J.R. Dahn: Active/inactive nanocomposites as anodes for Li-ion batteries. Electrochem. Solid-State Lett. 2, 3 (1999).

    Article  CAS  Google Scholar 

  17. Y.S. Jung, K.T. Lee, J.H. Ryu, D. Im, and S.M. Oh: Sn-carbon core-shell powder for anode in lithium secondary batteries. J. Electrochem. Soc. 152, A1452 (2005).

    Article  CAS  Google Scholar 

  18. G. Derrien, J. Hassoun, S. Panero, and B. Scrosati: Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv. Mater. 19, 2336 (2007).

    Article  CAS  Google Scholar 

  19. I.S. Kim, G.E. Blomgren, and P.N. Kumta: Sn/C composite anodes for Li-ion batteries. Electrochem. Solid-State Lett. 7, A44 (2004).

    Article  CAS  Google Scholar 

  20. J. Yang, M. Wachtler, M. Winter, and J.O. Besenhard: Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries. Electrochem. Solid-State Lett. 2, 161 (1999).

    Article  CAS  Google Scholar 

  21. W.M. Zhang, J.S. Hu, Y.G. Guo, S.F. Zheng, L.S. Zhong, W.G. Song, and L.J. Wan: Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 20, 1160 (2008).

    Article  CAS  Google Scholar 

  22. M. Wachtler, J.O. Besenhard, and M. Winter: Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J. Power Sources 94, 189 (2001).

    Article  CAS  Google Scholar 

  23. H.C. Shin and M.L. Liu: Three-dimensional porous copper-tin alloy electrodes for rechargeable lithium batteries. Adv. Funct. Mater. 15, 582 (2005).

    Article  CAS  Google Scholar 

  24. J. Hassoun, S. Panero, P. Simon, P.L. Taberna, and B. Scrosati: High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Adv. Mater. 19, 1632 (2007).

    Article  CAS  Google Scholar 

  25. X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, and L.A. Archer: Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325 (2006).

    Article  CAS  Google Scholar 

  26. M.S. Park, G.X. Wang, Y.M. Kang, D. Wexler, S.X. Dou, and H.K. Liu: Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Ed. 46, 750 (2007).

    Article  CAS  Google Scholar 

  27. Y. Yu, C.H. Chen, and Y. Shi: A tin-based amorphous oxide composite with a porous, spherical, multideck-cage morphology as a highly reversible anode material for lithium-ion batteries. Adv. Mater. 19, 993 (2007).

    Article  CAS  Google Scholar 

  28. S.J. Han, B.C. Jang, T. Kim, S.M. Oh, and T. Hyeon: Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes. Adv. Funct. Mater. 15, 1845 (2005).

    Article  CAS  Google Scholar 

  29. Tech-On!: Sony Enlarges Sn-based Li-ion Battery for Use in Notebook Computers. http://techon.nikkeibp.co.jp/english/NEWS_EN/20110720/193457/.

  30. K. Wang, X.M. He, J.G. Ren, C.Y. Jiang, and C.R. Wan: Preparation of Sn/C microsphere composite anode for lithium-ion batteries via carbothermal reduction. Electrochem. Solid-State Lett. 9, A320 (2006).

    Article  CAS  Google Scholar 

  31. G.X. Wang, J.H. Ahn, M.J. Lindsay, L. Sun, D.H. Bradhurst, S.X. Dou, and H.K. Liu: Graphite-tin composites as anode materials for lithium-ion batteries. J. Power Sources 97–98, 211 (2001).

    Article  Google Scholar 

  32. J.Y. Lee, R.F. Zhang, and Z.L. Liu: Dispersion of Sn and SnO on carbon anodes. J. Power Sources 90, 70 (2000).

    Article  CAS  Google Scholar 

  33. G.X. Wang, J. Yao, H.K. Liu, S.X. Dou, and J.H. Ahn: Electrochemical characteristics of tin-coated MCMB graphite as anode in lithium-ion cells. Electrochim. Acta 50, 517 (2004).

    Article  CAS  Google Scholar 

  34. B. Veeraraghavan, A. Durairajan, B. Haran, B. Popov, and R. Guidotti: Study of Sn-coated graphite as anode material for secondary lithium-ion batteries. J. Electrochem. Soc. 149, A675 (2002).

    Article  CAS  Google Scholar 

  35. B. Schwenzer, K.M. Roth, J.R. Gomm, M. Murr, and D.E. Morse: Kinetically controlled vapor-diffusion synthesis of novel nanostructured metal hydroxide and phosphate films using no organic reagents. J. Mater. Chem. 16, 401 (2006).

    Article  CAS  Google Scholar 

  36. R.L. Brutchey and D.E. Morse: Silicatein and the translation of its molecular mechanism of biosilicification into low temperature nanomaterial synthesis. Chem. Rev. 108, 4915 (2008).

    Article  CAS  Google Scholar 

  37. D. Kisailus, B. Schwenzer, J. Gomm, J.C. Weaver, and D.E. Morse: Kinetically controlled catalytic formation of zinc oxide thin films at low temperature. J. Am. Chem. Soc. 128, 10276 (2006).

    Article  CAS  Google Scholar 

  38. H.L. Zhang, F. Li, C. Liu, and H.M. Cheng: Poly(vinyl chloride) (PVC) coated idea revisited: Influence of carbonization procedures on PVC-coated natural graphite as anode materials for lithium ion batteries. J. Phys. Chem. C 112, 7767 (2008).

    Article  CAS  Google Scholar 

  39. Y.G. Wang, Y.R. Wang, E. Hosono, K. Wang, and H.S. Zhou: The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 47, 7461 (2008).

    Article  CAS  Google Scholar 

  40. H.L. Zhang, S.H. Liu, F. Li, S. Bai, C. Liu, J. Tan, and H.M. Cheng: Electrochemical performance of pyrolytic carbon-coated natural graphite spheres. Carbon 44, 2212 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the U.S. Department of Energy, Office of Science (Grant No. DE-SC0001009, to University of California, Santa Barbara (UCSB’s) Center for Energy Efficient Materials, an Energy Frontiers Research Center, for the support of H-L. Zhang, and Grant No. DE-FG02-02ER46006 for support of D.E. Morse) and the U.S. Army Research Office (through contract no. W911NF-09-D-0001 to the Institute for Collaborative Biotechnologies). We gratefully acknowledge the use of facilities of UCSB’s Materials Research Laboratory (supported by the Materials Research Science and Engineering Center Program of the National Science Foundation under Award No. DMR05-20415) and the California Nano-Systems Institute. We thank David Loren and Joseph Ventura of Bayer MaterialScience for the gift of the Baytubes CNTs to our laboratory at UCSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang-Li Hong.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, ZL., Morse, D.E. Transforming large-scale industrially produced carbon nanotubes to high-performance electrode materials for lithium-ion batteries. Journal of Materials Research 27, 410–416 (2012). https://doi.org/10.1557/jmr.2011.397

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.397

Navigation