Skip to main content
Log in

Shape control of highly crystallized titania nanorods based on formation mechanism

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A strategic scheme for controlling the shape of titania nanorods while maintaining their highly crystallized state was investigated in terms of the effects of reactant concentration and temperature change on the formation mechanism. Lowering the temperature from 433 to 413 K markedly slowed down the reaction rate and resulted in the coexistence of amorphous-like films and crystalline titania nanorods due to the concurrence of nucleation out of the amorphous phase and particle growth by crystallization. Based on these findings, a strategy for shape control was proposed and long, high aspect ratio titania nanorods in a highly crystallized state were successfully synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. G. Centi and S. Perathoner: The role of nanostructure in improving the performance of electrodes for energy storage and conversion. Eur. J. Inorg. Chem. 2009, 3851 (2009).

    Article  CAS  Google Scholar 

  2. X. Hu, G. Li, and J.C. Yu: Design, fabrication, and modification of nanostructured semiconductor materials for environmental and energy applications. Langmuir 26, 3031 (2010).

    Article  CAS  Google Scholar 

  3. L. Manna, E.C. Scher, and A.P. Alivisatos: Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700 (2000).

    Article  CAS  Google Scholar 

  4. S.A. Empedocles, R. Neuhauser, K. Shimizu, and M.G. Bawendi: Photoluminescence from single semiconductor nanostructures. Adv. Mater. 11, 1243 (1999).

    Article  CAS  Google Scholar 

  5. M. Nirmal and L. Brus: Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32, 407 (1999).

    Article  CAS  Google Scholar 

  6. A. Kongkanand and P.V. Kamat: Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor–SWCNT suspensions. ACS Nano 1, 13 (2007).

    Article  CAS  Google Scholar 

  7. M. Law, L.E. Green, J.C. Johnson, R. Saykally, and P. Yang: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).

    CAS  Google Scholar 

  8. A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996).

    Article  CAS  Google Scholar 

  9. A.B.F. Martinson, M.S. Goes, F. Febregat-Santiago, J. Bisquert, M.J. Pellin, and J.T. Hupp: Electron transport in dye-sensitized solar cells based on ZnO Nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. J. Phys. Chem. A 113, 4015 (2009).

    Article  CAS  Google Scholar 

  10. C. Burda, X. Chen, R. Narayanan, and El-M.A. Sayed: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).

    Article  CAS  Google Scholar 

  11. C.B. Murray, C.R. Kagan, and M.G. Bawendi: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocryatal assemblies. Annu. Rev. Mater. Sci. 30, 545 (2000).

    Article  CAS  Google Scholar 

  12. E.C. Scher, R. Soc, L. Manna, and A.P. Alivisatos: Shape control and applications of nanocrystals. Philos. Trans. R. Soc. London, Ser. A 361, 241 (2003).

    Article  CAS  Google Scholar 

  13. X.G. Peng, L. Manna, W.D. Yang, J. Wickham, E. Scher, A. Kadavanich, and A.P. Alivisatos: Shape control of CdSe nanocrystals. Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  14. Q. Song and Z.J. Zhang: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164 (2004).

    Article  CAS  Google Scholar 

  15. B.D. Reiss, C. Mao, D.J. Solis, K.S. Ryan, T. Thomson, and A.M. Belcher: Biological routes to metal alloy ferromagnetic nanostructures. Nano Lett. 4, 1127 (2004).

    Article  CAS  Google Scholar 

  16. W W. Yu, Y.A. Wang, and X. Peng: Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300 (2003).

    Article  CAS  Google Scholar 

  17. Z. Tang, B. Ozturk, Y. Wang, and N.A. Kotov: Simple preparation strategy and one-dimensional energy transfer in CdTe nanoparticle chains. J. Phys. Chem. B 108, 6927 (2004).

    Article  CAS  Google Scholar 

  18. Z. Tang, N.A. Kotov, and M. Giersig: Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237 (2002).

    Article  CAS  Google Scholar 

  19. H. Masuda and K. Fukuda: Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).

    Article  CAS  Google Scholar 

  20. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura: Highly ordered nanochannel-array architecture in anodic alumina. Appl. Phys. Lett. 71, 2770 (1997).

    Article  CAS  Google Scholar 

  21. K. Shankar, J.I. Basham, N.K. Allam, O.K. Varghese, G.K. Mor, X. Feng, M. Paulose, J.A. Seabold, K.-S. Choi, and C.A. Grimes: Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 113, 6327 (2009).

    Article  CAS  Google Scholar 

  22. A. Ghicov and P. Schmuki: Self-ordering electrochemistry: A review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures. Chem. Commun. 2791 (2009).

    Google Scholar 

  23. S. Rani, S.C. Roy, M. Paulose, O.K. Varghese, G.K. Mor, S. Kim, S. Yoriya, T.J. Latempa, and C.A. Grimes: Synthesis and applications of electrochemically self-assembled titania nanotube arrays. Phys. Chem. Chem. Phys. 12, 2780 (2010).

    Article  CAS  Google Scholar 

  24. C.-J. Lin, C.W. Yu-Y., and S.-H. Chien: Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 20, 1073 (2010).

    Article  CAS  Google Scholar 

  25. R.L. Penn and J.F. Banfield: Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania. Science 281, 969 (1998).

    Article  CAS  Google Scholar 

  26. J.F. Banfield, S.A. Welch, H. Zhang, T.T. Ebert, and R.L. Penn: Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751 (2000).

    Article  CAS  Google Scholar 

  27. K. Fujihara, A. Kumar, R. Jose, S. Ramakrishna, and S. Uchida: Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology 18, 365709 (2007).

    Article  CAS  Google Scholar 

  28. R.A. Lucky, Y. Medina-Gonzalez, and P.A. Charpentier: Zr doping on one-dimensional titania nanomaterials synthesized in supercritical carbon dioxide. Langmuir 26, 19014 (2010).

    Article  CAS  Google Scholar 

  29. H.G. Yang, C.H. Sun, S.Z. Qiao, J. Zou, G. Liu, S.C. Smith, H.M. Cheng, and G.Q. Lu: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).

    Article  CAS  Google Scholar 

  30. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zou, H.M. Cheng, and G.Q. Lu: Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 131, 4078 (2009).

    Article  CAS  Google Scholar 

  31. R. Garcia and R. Tello: Size and shape controlled growth of molecular nanostructures on silicon oxide templates. Nano Lett. 4, 1115 (2004).

    Article  CAS  Google Scholar 

  32. M. Grätzel: Photoelectrochemical cells. Nature 414, 338 (2001).

    Article  Google Scholar 

  33. M. Grätzel: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841 (2005).

    Article  CAS  Google Scholar 

  34. M.K. Nazeeruddin, De F. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, T. Bessho, and M. Graetzel: Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835 (2005).

    Article  CAS  Google Scholar 

  35. T. Sawatsuk, A. Chindaduang, C. Sae-kung, S. Pratontep, and G. Tumcharern: Dye-sensitized solar cells based on TiO2–MWCNTs composite electrodes: Performance improvement and their mechanisms. Diamond Relat. Mater. 18, 524 (2009).

    Article  CAS  Google Scholar 

  36. N. Cai, S.-J. Moon, L. Cevey-Ha, T. Moehl, R. Humphry-Baker, P. Wang, S.M. Zakeeruddin, and M. Graetzel: An organic D-pi-A dye for record efficiency solid-state sensitized heterojunction solar cells. Nano Lett. 11, 1452 (2011).

    Article  CAS  Google Scholar 

  37. J.-H. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, and M. Graetzel: Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4, 842 (2011).

    Article  CAS  Google Scholar 

  38. T. Bessho, S.M. Zakeeruddin, C.-Y. Yeh, E.W. Diau-G., and M. Grätzel: Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 49, 6646 (2010).

    Article  CAS  Google Scholar 

  39. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  40. A. Kudo and Y. Miseki: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253 (2009).

    Article  CAS  Google Scholar 

  41. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang: Highly efficient dye-sensitized solar cells with titania thin film electrode composed of network structure of single-crystal-like TiO2 nanowires made by “oriented attachment” mechanism. J. Am. Chem. Soc. 126, 14943 (2004).

    Article  CAS  Google Scholar 

  42. J. Jiu, S. Isoda, F. Wang, and M. Adachi: Dye-sensitized solar cells based on a single-crystalline TiO2 nanorod film. J. Phys. Chem. B 110, 2087 (2006).

    Article  CAS  Google Scholar 

  43. T. Kurata, Y. Mori, S. Isoda, J. Jiu, K. Tsuchiya, F. Uchida, and M. Adachi: Characterization and formation process of highly crystallized single crystalline TiO2 nanorods for dye-sensitized solar cells. Curr. Nanosci. 6, 269 (2010).

    Article  CAS  Google Scholar 

  44. M. Adachi, J. Jiu, and S. Isoda: Synthesis of morphology-controlled titania nanocrystals and application for dye-sensitized solar cells. Curr. Nanosci. 3, 285 (2007).

    Article  CAS  Google Scholar 

  45. M. Adachi, J. Jiu, S. Isoda, Y. Mori, and F. Uchida: Self-assembled nanoscale architecture of TiO2 and application for dye-sensitized solar cells. Nanotechnol. Sci. Appl. 1, 1 (2008).

    Article  CAS  Google Scholar 

  46. K. Yoshida, J. Jiu, D. Nagamatsu, T. Nemoto, H. Kurata, M. Adachi, and S. Isoda: Structure of TiO2 nanorods formed with double surfactants. Mol. Cryst. Liq. Cryst. 491, 14 (2008).

    Article  CAS  Google Scholar 

  47. T. Sugimoto, X. Zhou, and A. Muramatsu: Synthesis of uniform anatase TiO2 nanoparticles by gel–sol method 4. Shape control. J. Colloid Interface Sci. 259, 53 (2003).

    Article  CAS  Google Scholar 

  48. P.A. Connor, K.D. Dobson, and A.J. McQuillan: New sol-gel attenuated total reflection infrared spectroscopic method for analysis of adsorption at metal oxide surface in aqueous solution. Chelation of TiO2, ZrO2, and Al2O3 surfaces by catechol, 8-quinolinol, and acetylacetone. Langmuir 11, 4193 (1995).

    Article  CAS  Google Scholar 

  49. J. Jiu, F. Wang, M. Sakamoto, J. Takao, and M. Adachi: Preparation of nanocrystaline TiO2 with mixed template and its application for dye-sensitized solar cells. J. Electrochem. Soc. 151, A1653 (2004).

    Article  CAS  Google Scholar 

  50. J. Jiu, S. Isoda, M. Adachi, and F. Wang: Preparation of TiO2 nanocrystalline with 3–5 nm and application for dye-sensitized solar cell. J. Photochem. Photobiol., A 189, 314 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adachi Motonari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motonari, A., Yoshida, K., Kurata, T. et al. Shape control of highly crystallized titania nanorods based on formation mechanism. Journal of Materials Research 27, 440–447 (2012). https://doi.org/10.1557/jmr.2011.393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.393

Navigation