Skip to main content
Log in

Modeling microbending of thin films through discrete dislocation dynamics, continuum dislocation theory, and gradient plasticity

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Constitutive models that describe crystal microplasticity in a continuum framework can be envisaged as average representations of the dynamics of dislocation systems. Thus, their performance needs to be assessed not only by their ability to correctly represent stress-strain characteristics on the specimen scale but also by their ability to correctly represent the evolution of internal stress and strain patterns. Three-dimensional discrete dislocation dynamics (3D DDD) simulations provide complete knowledge of this evolution, and averages over ensembles of statistically equivalent simulations can therefore be used to assess the performance of continuum models. In this study, we consider the bending of a free-standing thin film. From a continuum mechanics point of view, this is a one-dimensional (1D) problem as stress and strain fields vary only in one dimension. From a dislocation plasticity point of view, on the other hand, the spatial degrees of freedom associated with the bending and piling up of dislocations are essential. We compare the results of 3D DDD simulations with those obtained from a simple 1D gradient plasticity model and a more complex dislocation-based continuum model. Both models correctly reproduce the nontrivial strain patterns predicted by 3D DDD for the microbending problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. S. Hoffmann, I. Utke, B. Moser, J. Michler, S.H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele, and C. Ballif: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires Nano Lett. 6, 622 (2006).

    Article  CAS  Google Scholar 

  2. Å.K. Jämting, J.M. Bell, M.V. Swain, and N. Schwarzer: Investigation of the elastic modulus of thin films using simple biaxial bending techniques Thin Solid Films 308-309, 304 (1997).

    Article  Google Scholar 

  3. H.H.M. Cleveringa, van der E. Giessen, and A. Needleman: Comparison of discrete dislocation and continuum plasticity predictions for a composite material Acta Mater. 45, 3163 (1997).

    Article  CAS  Google Scholar 

  4. A. Needleman and van der E. Giessen: 2D dislocation dynamics in thin metal layers Mater. Sci. Eng. A309, 274 (2001).

    Google Scholar 

  5. S. Yefimov, I. Groma, and van der E. Giessen: A comparison of a statistical-mechanics based plasticity model with discrete dislocation plasticity calculations J. Mech. Phys. Solids 52, 279 (2004).

    Article  Google Scholar 

  6. M. Sauzay and L.P. Kubin: Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals Prog. Mater. Sci. 56, 725 (2011).

    Article  CAS  Google Scholar 

  7. N.M. Ghoniem, E. Busso, N. Kioussis, and H. Huang: Multiscale modeling of nanomechanics and micromechanics: An overview Philos. Mag. A 83, 3475 (2003).

    Article  CAS  Google Scholar 

  8. E.C. Aifantis: Dislocation kinetics and the formation of deformation bands, in Defects, Fracture and Fatigue, edited by G.C. Sih and J.W. Provan (Martinus-Nijhoff, The Hague, 1983), pp. 75–84.

    Chapter  Google Scholar 

  9. E.C. Aifantis: On the dynamical origin of dislocation patterning Mater. Sci. Eng. 81, 563 (1986).

    Article  CAS  Google Scholar 

  10. D. Walgraef and E.C. Aifantis: Dislocation patterning in fatigued metals as a result of dynamical instabilities J. Appl. Phys. 58, 688 (1985).

    Article  CAS  Google Scholar 

  11. A.-A. Elzab, M. Zaiser, and E.P. Busso (eds): Density-based modelling of dislocations Philos. Mag. 87 (8-9), (2007) (special issue).

    Google Scholar 

  12. E.C. Aifantis: On the microstructural origin of certain inelastic models Trans. ASME J. Eng. Mater. Technol. 106, 326 (1984).

    Article  CAS  Google Scholar 

  13. E.C. Aifantis: Deformation and failure of bulk nanograined and ultrafine-grained materials Mater. Sci. Eng, A 503, 190 (2009).

    Article  Google Scholar 

  14. N.A. Fleck and J.W. Hutchinson: A reformulation of strain gradient plasticity J. Mech. Phys. Solids 49, 2245 (2001).

    Article  Google Scholar 

  15. M.E. Gurtin and L. Anand: Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization J. Mech. Phys. Solids 57, 405 (2009).

    Article  CAS  Google Scholar 

  16. K.E. Aifantis and J.R. Willis: The role of interfaces in enhancing the yield strength of composites and polycrystals J. Mech. Phys. Solids 53, 1505 (2005).

    Article  Google Scholar 

  17. A.-A. Elzab: Statistical mechanics treatment of the evolution of dislocation distributions in single crystals Phys. Rev. B 61, 11956 (2000).

    Article  Google Scholar 

  18. R. Sedlacek, J. Kratochvil, and E. Werner: The importance of being curved: Bowing dislocations in a continuum description Philos. Mag. 83, 3735 (2003).

    Article  CAS  Google Scholar 

  19. T. Hochrainer, M. Zaiser, and P. Gumbsch: A three-dimensional continuum theory of dislocation systems: Kinematics and mean-field formulation Philos. Mag. 87, 1261 (2007).

    Article  CAS  Google Scholar 

  20. S. Sandfeld, T. Hochrainer, M. Zaiser, and P. Gumbsch: Continuum modeling of dislocation plasticity: Theory, numerical implementation and validation by discrete dislocation simulations J. Mater. Res. 26, 623 (2011).

    Article  CAS  Google Scholar 

  21. K.E. Aifantis, J. Senger, D. Weygand, and M. Zaiser: Discrete dislocation dynamics simulation and continuum modeling of plastic boundary layers in tricrystal micropillars IOP Conf. Ser. Mat. Sci. Eng. 3, 012025 (2009).

    Article  Google Scholar 

  22. D. Weygand, L.H. Friedman, van der E. Giessen, and A. Needleman: Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics Modell. Simul. Mater. Sci. Eng. 10, 437 (2002).

    Article  Google Scholar 

  23. C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments Acta Mater. 56, 1942 (2008).

    Article  CAS  Google Scholar 

  24. R. Sedlacek: Orowan-type size effect in plastic bending of free-standing thin crystalline strips Mater. Sci. Eng, A 393, 387 (2005).

    Article  Google Scholar 

  25. M. Zaiser and T. Hochrainer: Some steps towards a continuum representation of dislocation systems Scr. Mater. 54, 717 (2006).

    Article  CAS  Google Scholar 

  26. C. Schwarz, R. Sedlacek, and E. Werner: Refined short-range interactions in the continuum dislocation-based model of plasticity at the microscale Acta Mater. 56, 341 (2008).

    Article  CAS  Google Scholar 

  27. M. Zaiser, N. Nikitas, T. Hochrainer, and E.C. Aifantis: Modelling size effects using 3D density-based dislocation dynamics Philos. Mag. 87, 1283 (2007).

    Article  CAS  Google Scholar 

  28. K.E. Aifantis and A.H.W. Ngan: Modeling dislocation-grain boundary interactions through gradient plasticity and nanoindentation Mater. Sci. Eng, A 459, 251 (2007).

    Article  Google Scholar 

  29. M. Zaiser and E.C. Aifantis: Geometrically necessary dislocations and strain gradient plasticity—a dislocation dynamics point of view Scr. Mater. 48, 133 (2002).

    Article  Google Scholar 

Download references

Acknowledgments

K.EA and MZ thank support from KEA’s European Research Council (ERC) Starting Grant 211166. MZ also thanks for support by Engineering and Physical Sciences Research Council (EPSRC) under Grant No. EP/J003387/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katerina E. Aifantis.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aifantis, K.E., Weygand, D., Motz, C. et al. Modeling microbending of thin films through discrete dislocation dynamics, continuum dislocation theory, and gradient plasticity. Journal of Materials Research 27, 612–618 (2012). https://doi.org/10.1557/jmr.2011.390

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.390

Navigation