Skip to main content
Log in

Distribution of visible luminescence centers in hydrogen-doped ZnO

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

ZnO crystals have been investigated by scanning cathodoluminescence microscopy and spectroscopy at 80 K following hydrogen incorporation by plasma exposure. The intensity of the ZnO near-band-edge (NBE) emission is greatly enhanced while the defect-related green emission is quenched following plasma treatment. These effects are attributed to the passivation of zinc vacancies by hydrogen. The green and yellow intensities and their intensity ratios to the NBE vary with excitation depth for both undoped and H-doped ZnO crystals. The intensities of the green and yellow emissions exhibit sublinear dependencies on electron beam excitation density while the NBE intensity increases linearly with the excitation density. These saturation effects with increasing excitation density must be taken into account when assessing defects in ZnO by luminescence characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000).

    Article  Google Scholar 

  2. Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, N.Y. Garces, N.C. Giles, L.E. Halliburton, S. Niki, and L.J. Brillson: Remote hydrogen plasma doping of single crystal ZnO. Appl. Phys. Lett. 84, 2545 (2004).

    Article  CAS  Google Scholar 

  3. Y.M. Strzhemechny, J. Nemergut, P.E. Smith, J. Bae, D.C. Look, and L.J. Brillson: Remote hydrogen plasma processing of ZnO single crystal surfaces. J. Appl. Phys. 94, 4256 (2003).

    Article  CAS  Google Scholar 

  4. K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, S.O. Kucheyev, C. Jagadish, J.S. Williams, B. Luo, F. Ren, D.C. Look, and J.M. Zavada: Hydrogen incorporation, diffusivity and evolution in bulk ZnO. Solid-State Electron. 47, 2255 (2003).

    Article  CAS  Google Scholar 

  5. C. Jagadish and S.J. Pearton: Zinc Oxide bulk, thin films and nanostructures: Processing, properties and applications (Elsevier, New York, 2006).

    Google Scholar 

  6. T. Sekiguchi, N. Ohashi, and Y. Terada: Effect of hydrogenation on ZnO luminescence. Jpn. J. Appl. Phys. 36, L289 (1997).

    Article  CAS  Google Scholar 

  7. N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda: Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO. Appl. Phys. Lett. 80, 2869 (2002).

    Article  CAS  Google Scholar 

  8. A. Janotti and C.G. Van de Walle: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

    Article  Google Scholar 

  9. C. Ton-That, M.R. Phillips, M. Foley, S.J. Moody, and A.P.J. Stampfl: Surface electronic properties of ZnO nanoparticles. Appl. Phys. Lett. 92, 261916 (2008).

    Article  Google Scholar 

  10. J. Nayak, S. Kimura, S. Nozaki, H. Ono, and K. Uchida: Yellowish-white photoluminescence from ZnO nanoparticles doped with Al and Li. Superlattices Microstruct. 42, 438 (2007).

    Article  CAS  Google Scholar 

  11. B.G. Yacobi and D.B. Holt: Cathodoluminescence microscopy of inorganic solids (Plenum, New York, 1990).

    Book  Google Scholar 

  12. S.M. Davidson and C.A. Dimitriadis: Advances in the electrical assessment of semiconductors using the scanning electron microscope. J. Microsc. 118, 275 (1980).

    Article  CAS  Google Scholar 

  13. M.R. Phillips, O. Gelhausen, and E.M. Goldys: Cathodoluminescence properties of zinc oxide nanoparticles. Phys. Status Solidi A 201, 229 (2004).

    Article  CAS  Google Scholar 

  14. L.J. Wang and N.C. Giles: Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. J. Appl. Phys. 94, 973 (2003).

    Article  CAS  Google Scholar 

  15. T.M. Borseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, and M. Willander: Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 262112 (2006).

    Article  Google Scholar 

  16. T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami: Hydrothermal growth of ZnO single crystals and their optical characterization. J. Cryst. Growth 214, 72 (2000).

    Article  Google Scholar 

  17. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  Google Scholar 

  18. D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin: CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92 (2007).

    Article  CAS  Google Scholar 

  19. A. Nadarajah and R. Konenkamp: Laser annealing of photoluminescent ZnO nanorods grown at low temperature. Nanotechnology 22, 025205 (2011).

    Article  CAS  Google Scholar 

  20. J. Mass, M. Avella, J. Jimenez, M. Callahan, E. Grant, K. Rakes, D. Bliss, and B.G. Wang: Cathodoluminescence characterization of hydrothermal ZnO crystals. Superlattices Microstruct. 38, 223 (2005).

    Article  CAS  Google Scholar 

  21. J.D. Prades, A. Cirera, J.R. Morante, and A. Comet: Ab initio insights into the visible luminescent properties of ZnO. Thin Solid Films 515, 8670 (2007).

    Article  CAS  Google Scholar 

  22. E.V. Lavrov, J. Weber, F. Borrnert, C.G. Van de Walle, and R. Helbig: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 (2002).

    Article  Google Scholar 

  23. S.O. Kucheyev, M. Toth, M.R. Phillips, J.S. Williams, and C. Jagadish: Effects of excitation density on cathodoluminescence from GaN. Appl. Phys. Lett. 79, 2154 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuong Ton-That.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lem, L.L.C., Ton-That, C. & Phillips, M.R. Distribution of visible luminescence centers in hydrogen-doped ZnO. Journal of Materials Research 26, 2912–2915 (2011). https://doi.org/10.1557/jmr.2011.383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.383

Navigation