Abstract
ZnO crystals have been investigated by scanning cathodoluminescence microscopy and spectroscopy at 80 K following hydrogen incorporation by plasma exposure. The intensity of the ZnO near-band-edge (NBE) emission is greatly enhanced while the defect-related green emission is quenched following plasma treatment. These effects are attributed to the passivation of zinc vacancies by hydrogen. The green and yellow intensities and their intensity ratios to the NBE vary with excitation depth for both undoped and H-doped ZnO crystals. The intensities of the green and yellow emissions exhibit sublinear dependencies on electron beam excitation density while the NBE intensity increases linearly with the excitation density. These saturation effects with increasing excitation density must be taken into account when assessing defects in ZnO by luminescence characterization.
Similar content being viewed by others
References
C.G. Van de Walle: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000).
Y.M. Strzhemechny, H.L. Mosbacker, D.C. Look, D.C. Reynolds, C.W. Litton, N.Y. Garces, N.C. Giles, L.E. Halliburton, S. Niki, and L.J. Brillson: Remote hydrogen plasma doping of single crystal ZnO. Appl. Phys. Lett. 84, 2545 (2004).
Y.M. Strzhemechny, J. Nemergut, P.E. Smith, J. Bae, D.C. Look, and L.J. Brillson: Remote hydrogen plasma processing of ZnO single crystal surfaces. J. Appl. Phys. 94, 4256 (2003).
K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, S.O. Kucheyev, C. Jagadish, J.S. Williams, B. Luo, F. Ren, D.C. Look, and J.M. Zavada: Hydrogen incorporation, diffusivity and evolution in bulk ZnO. Solid-State Electron. 47, 2255 (2003).
C. Jagadish and S.J. Pearton: Zinc Oxide bulk, thin films and nanostructures: Processing, properties and applications (Elsevier, New York, 2006).
T. Sekiguchi, N. Ohashi, and Y. Terada: Effect of hydrogenation on ZnO luminescence. Jpn. J. Appl. Phys. 36, L289 (1997).
N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda: Effect of hydrogen doping on ultraviolet emission spectra of various types of ZnO. Appl. Phys. Lett. 80, 2869 (2002).
A. Janotti and C.G. Van de Walle: Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).
C. Ton-That, M.R. Phillips, M. Foley, S.J. Moody, and A.P.J. Stampfl: Surface electronic properties of ZnO nanoparticles. Appl. Phys. Lett. 92, 261916 (2008).
J. Nayak, S. Kimura, S. Nozaki, H. Ono, and K. Uchida: Yellowish-white photoluminescence from ZnO nanoparticles doped with Al and Li. Superlattices Microstruct. 42, 438 (2007).
B.G. Yacobi and D.B. Holt: Cathodoluminescence microscopy of inorganic solids (Plenum, New York, 1990).
S.M. Davidson and C.A. Dimitriadis: Advances in the electrical assessment of semiconductors using the scanning electron microscope. J. Microsc. 118, 275 (1980).
M.R. Phillips, O. Gelhausen, and E.M. Goldys: Cathodoluminescence properties of zinc oxide nanoparticles. Phys. Status Solidi A 201, 229 (2004).
L.J. Wang and N.C. Giles: Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy. J. Appl. Phys. 94, 973 (2003).
T.M. Borseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, and M. Willander: Identification of oxygen and zinc vacancy optical signals in ZnO. Appl. Phys. Lett. 89, 262112 (2006).
T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami: Hydrothermal growth of ZnO single crystals and their optical characterization. J. Cryst. Growth 214, 72 (2000).
K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, and B.E. Gnade: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996).
D. Drouin, A.R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin: CASINO V2.42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92 (2007).
A. Nadarajah and R. Konenkamp: Laser annealing of photoluminescent ZnO nanorods grown at low temperature. Nanotechnology 22, 025205 (2011).
J. Mass, M. Avella, J. Jimenez, M. Callahan, E. Grant, K. Rakes, D. Bliss, and B.G. Wang: Cathodoluminescence characterization of hydrothermal ZnO crystals. Superlattices Microstruct. 38, 223 (2005).
J.D. Prades, A. Cirera, J.R. Morante, and A. Comet: Ab initio insights into the visible luminescent properties of ZnO. Thin Solid Films 515, 8670 (2007).
E.V. Lavrov, J. Weber, F. Borrnert, C.G. Van de Walle, and R. Helbig: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 (2002).
S.O. Kucheyev, M. Toth, M.R. Phillips, J.S. Williams, and C. Jagadish: Effects of excitation density on cathodoluminescence from GaN. Appl. Phys. Lett. 79, 2154 (2001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lem, L.L.C., Ton-That, C. & Phillips, M.R. Distribution of visible luminescence centers in hydrogen-doped ZnO. Journal of Materials Research 26, 2912–2915 (2011). https://doi.org/10.1557/jmr.2011.383
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2011.383