Skip to main content
Log in

Structural characterization of B-doped diamond nanoindentation tips

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report on the electrical and structural properties of boron-doped diamond tips commonly used for in-situ electromechanical testing during nanoindentation. The boron dopant environment, as evidenced by cathodoluminescence (CL) microscopy, revealed significantly different boron states within each tip. Characteristic emission bands of both electrically activated and nonelectrically activated boron centers were identified in all boron-doped tips. Surface CL mapping also revealed vastly different surface properties, confirming a high amount of nonelectrically activated boron clusters at the tip surface. Raman microspectroscopy analysis showed that structural characteristics at the atomic scale for boron-doped tips also differ significantly when compared to an undoped diamond tip. Furthermore, the active boron concentration, as inferred via the Raman analysis, varied greatly from tip-to-tip. It was found that tips (or tip areas) with low overall boron concentration have a higher number of electrically inactive boron, and thus non-Ohmic contacts were made when these tips contacted metallic substrates. Conversely, tips that have higher boron concentrations and a higher number of electrically active boron centers display Ohmic-like contacts. Our results demonstrate the necessity to understand and fully characterize the boron environments, boron concentrations, and atomic structure of the tips prior to performing in situ electromechanical experiments, particularly if quantitative electrical data are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
TABLE I.

Similar content being viewed by others

References

  1. M.I. Eremets, V.V. Struzhkin, H-K. Mao, and R.J. Hemley: Superconductivity in boron. Science 293, 272 (2001).

    Article  CAS  Google Scholar 

  2. J.M. Besson, E.H. Mokhtari, J. Gonzalez, and G. Weill: Electrical properties of semimetallic silicon III and semiconductive silicon IV at ambient pressure. Phys. Rev. Lett. 59, 473 (1987).

    Article  CAS  Google Scholar 

  3. R. Nowak, D. Chrobak, S. Nagao, D. Vodnick, M. Berg, A. Tukiainen, and M. Pessa: An electric current spike linked to nanoscale plasticity. Nat. Nanotechnol. 4, 287 (2009).

    Article  CAS  Google Scholar 

  4. J.E. Bradby, J.S. Williams, and M.V. Swain: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).

    Article  CAS  Google Scholar 

  5. S. Ruffell, J.E. Bradby, J.S. Williams, and O.L. Warren: An in situ electrical measurement technique via a conducting diamond tip for nanoindentation in silicon. J. Mater. Res. 22, 578 (2007).

    Article  CAS  Google Scholar 

  6. A.B. Mann, D. van Heerden, J.B. Pethica, and T.P. Weihs: Size-dependent phase transformations during point loading of silicon. J. Mater. Res. 15, 1754 (2000).

    Article  CAS  Google Scholar 

  7. S. Ruffell, K. Sears, A.P. Knights, J.E. Bradby, and J.S. Williams: Experimental evidence for semiconducting behavior of Si-XII. Phys. Rev. B 83, 075316 (2011).

    Article  CAS  Google Scholar 

  8. L. Fang, C.L. Muhlstein, J.G. Collins, A.L. Romasco, and L.H. Friedman: Continuous electrical in situ contact area measurement during instrumented indentation. J. Mater. Res. 23, 2480 (2008).

    Article  CAS  Google Scholar 

  9. N. Fujisawa, S. Ruffell, J.E. Bradby, J.S. Williams, B. Haberl, and O.L. Warren: Understanding pressure-induced phase-transformation behavior in silicon through in situ electrical probing under cyclic loading conditions. J. Appl. Phys. 105, 106111 (2009).

    Article  CAS  Google Scholar 

  10. S. Ruffell, J.E. Bradby, N. Fujisawa, and J.S. Williams: Identification of nanoindentation-induced phase changes in silicon by in situ electrical characterization. J. Appl. Phys. 101, 083531 (2007).

    Article  CAS  Google Scholar 

  11. M. Bhaskaran, S. Sriram, S. Ruffell, and A. Mitchell: Nanoscale characterization of energy generation from piezoelectric thin films. Adv. Funct. Mater. 21, 2251 (2011).

    Article  CAS  Google Scholar 

  12. Hysitron: TI-950-TriboIndenter. http://www.hysitron.com/products/ti-series/ti-950-triboindenter.

  13. S.V. Kalinin, B.J. Rodriguez, S. Jesse, E. Karapetian, B. Mirman, E.A. Eliseev, and A.N. Morozovska: Nanoscale electromechanics of ferroelectric and biological systems: A new dimension in scanning-probe microscopy. Annu. Rev. Mater. Res. 37, 189 (2007).

    Article  CAS  Google Scholar 

  14. R. Holm: Electric Contacts; Theory and Applications (Springer, New York, 2000).

    Google Scholar 

  15. T. Tachibana, B.E. Williams, and J.T. Glass: Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. i. gold contacts: A non-carbide-forming metal. Phys. Rev. B 45, 11968 (1992).

    Article  CAS  Google Scholar 

  16. T. Tachibana, B.E. Williams, and J.T. Glass: Correlation of the electrical properties of metal contacts on diamond films with the chemical nature of the metal-diamond interface. ii. Titanium contacts: A carbide-forming metal. Phys. Rev. B 45, 11975 (1992).

    Article  CAS  Google Scholar 

  17. R.J. Trew, J.B. Yan, and P.M. Mock: The potential of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc. IEEE 79, 598 (1991).

    Article  CAS  Google Scholar 

  18. K. Thonke: The boron acceptor in diamond. Semicond. Sci. Technol. 18, S20 (2003).

    Article  CAS  Google Scholar 

  19. N. Tumilty, J. Welch, R. Lang, C. Wort, R. Balmer, and R.B. Jackman: An impedance spectroscopic investigation of the electrical properties of delta-doped diamond structures. J. Appl. Phys. 106, 103707 (2009).

    Article  CAS  Google Scholar 

  20. N. Iwashita, M.V. Swain, J.S. Field, N. Ohta, and S. Bitoh: Elasto-plastic deformation of glass -like carbons heat-treated at different temperatures. Carbon 39, 1525 (2001).

    Article  CAS  Google Scholar 

  21. P.K. Baumann and R.J. Nemanich: Electron affinity and Schottky barrier height of metal–diamond (100), (111), and (110) interfaces. J. Appl. Phys. 83, 2072 (1998).

    Article  CAS  Google Scholar 

  22. A.T. Collins, A. Connor, C.H. Ly, A. Shareef, and P.M. Spear: High-temperature annealing of optical centers in type-i diamond. J. Appl. Phys. 97, 083517 (2005).

    Article  CAS  Google Scholar 

  23. A.T. Collins and G.S. Woods: Cathodoluminescence from giant platelets, and of the 2.526 eV vibronic system, in type Ia diamonds. Philos. Mag. B 45, 385 (1982).

    Article  CAS  Google Scholar 

  24. P.B. Klein, M.D. Crossfield, J.A. Freitas Jr., and A.T. Collins: Donor-acceptor pair recombination in synthetic type-iib semiconducting diamond. Phys. Rev. B 51, 9634 (1995).

    Article  CAS  Google Scholar 

  25. L.H. Robins, L.P. Cook, E.N. Farabaugh, and A. Feldman: Cathodoluminescence of defects in diamond films and particles grown by hot-filament chemical-vapor deposition. Phys. Rev. B 39, 13367 (1989).

    Article  CAS  Google Scholar 

  26. M. Kadri, D. Araujo, M. Wade, A. Deneuville, and E. Bustarret: Effect of oxygen on the cathodoluminescence signal from excitons, impurities and structural defects in homoepitaxial (100) diamond films. Diamond Relat. Mater. 14, 566 (2005).

    Article  CAS  Google Scholar 

  27. L.H. Robins, E.N. Farabaugh, and A. Feldman: Cathodoluminescence spectroscopy of free and bound excitons in chemical-vapor-deposited diamond. Phys. Rev. B 48, 14167 (1993).

    Article  CAS  Google Scholar 

  28. H. Sternschulte, J. Horseling, T. Albrecht, and K. Thonke: Characterization of doped and undoped CVD-diamond films by cathodoluminescence. Diamond Relat. Mater. 5, 585 (1996).

    Article  CAS  Google Scholar 

  29. D. Takeuchi, H. Watanabe, S. Yamanaka, H. Okushi, H. Sawada, H. Ichinose, T. Sekiguchi, and K. Kajimura: Origin of band-A emission in diamond thin films. Phys. Rev. B 63, 245328 (2001).

    Article  CAS  Google Scholar 

  30. H. Kawarada, H. Matsuyama, Y. Yokota, T. Sogi, A. Yamaguchi, and A. Hiraki: Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds. Phys. Rev. B 47, 3633 (1993).

    Article  CAS  Google Scholar 

  31. H. Kawarada, Y. Yokota, and A. Hiraki: Intrinsic and extrinsic recombination radiation from undoped and boron-doped diamonds formed by plasma chemical vapor deposition. Appl. Phys. Lett. 57, 1889 (1990).

    Article  CAS  Google Scholar 

  32. R.J. Graham, T.D. Moustakas, and M.M. Disko: Cathodoluminescence imaging of defects and impurities in diamond films grown by chemical vapor deposition. J. Appl. Phys. 69, 3212 (1991).

    Article  CAS  Google Scholar 

  33. S. Koizumi, K. Watanabe, M. Hasegawa, and H. Kanda: Ultraviolet emission from a diamond pn junction. Science 292, 1899 (2001).

    Article  CAS  Google Scholar 

  34. S.C. Lawson, H. Kanda, H. Kiyota, T. Tsutsumi, and H. Kawarada: Cathodoluminescence from high-pressure synthetic and chemical-vapor-deposited diamond. J. Appl. Phys. 77, 1729 (1995).

    Article  CAS  Google Scholar 

  35. P. Muret and M. Wade: Acceptor compensation by dislocations related defects in boron doped homoepitaxial diamond films from cathodoluminescence and Schottky diodes current-voltage characteristics. Phys. Status Solidi A 203, 3142 (2006).

    Article  CAS  Google Scholar 

  36. C. Baron, A. Deneuville, M. Wade, F. Jomard, and J. Chevallier: Cathodoluminescence measurements on heavily boron doped homoepitaxial diamond films and their interfaces with their Ib substrates. Phys. Status Solidi A 203, 544 (2006).

    Article  CAS  Google Scholar 

  37. H. Kawarada, Y. Yokota, Y. Mori, K. Nishimura, and A. Hiraki: Cathodoluminescence and electroluminescence of undoped and boron-doped diamond formed by plasma chemical vapor deposition. J. Appl. Phys. 67, 983 (1990).

    Article  CAS  Google Scholar 

  38. P.J. Dean: Bound excitons and donor-acceptor pairs in natural and synthetic diamond. Phys. Rev. 139, A588 (1965).

    Article  Google Scholar 

  39. J. Ruan, K. Kobashi, and W.J. Choyke: On the “band-A” emission and boron related luminescence in diamond. Appl. Phys. Lett. 60, 3138 (1992).

    Article  CAS  Google Scholar 

  40. D.S. Knight and W.B. White: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  41. K. Nishimura, K. Das, and J.T. Glass: Material and electrical characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition. J. Appl. Phys. 69, 3142 (1991).

    Article  CAS  Google Scholar 

  42. M. Mermoux, F. Jomard, C. Tavars, F. Omns, and E. Bustarret: Raman characterization of boron-doped 111 homoepitaxial diamond layers. Diamond Relat. Mater. 15, 572 (2006).

    Article  CAS  Google Scholar 

  43. M. Mermoux, B. Marcus, G.M. Swain, and J.E. Butler: A confocal Raman imaging study of an optically transparent boron-doped diamond electrode. J. Phys. Chem. B 106, 10816 (2002).

    Article  CAS  Google Scholar 

  44. S. Szunerits, M. Mermoux, A. Crisci, B. Marcus, P. Bouvier, D. Delabouglise, J.P. Petit, S. Janel, R. Boukherroub, and L. Tay: Raman imaging and Kelvin probe microscopy for the examination of the heterogeneity of doping in polycrystalline boron-doped diamond electrodes. J. Phys. Chem. B 110, 23888 (2006).

    Article  CAS  Google Scholar 

  45. E. Bourgeois, E. Bustarret, P. Achatz, F. Omnes, and X. Blase: Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations. Phys. Rev. B 74, 094509 (2006).

    Article  CAS  Google Scholar 

  46. J.P. Goss and P.R. Briddon: Theory of boron aggregates in diamond: First-principles calculations. Phys. Rev. B 73, 085204 (2006).

    Article  CAS  Google Scholar 

  47. J.W. Ager III, W. Walukiewicz, M. Mc Cluskey, M.A. Plano, and M.I. Landstrass: Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 66, 616 (1995).

    Article  CAS  Google Scholar 

  48. P. Gonon, E. Gheeraert, A. Deneuville, F. Fontaine, L. Abello, and G. Lucazeau: Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance. J. Appl. Phys. 78, 7059 (1995).

    Article  CAS  Google Scholar 

  49. F. Pruvost and A. Deneuville: Analysis of the Fano in diamond. Diamond Relat. Mater. 10, 531 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an Australian Research Council Linkage project. JB is the recipient of an Australian Research Council QEII Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Sprouster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sprouster, D.J., Ruffell, S., Bradby, J.E. et al. Structural characterization of B-doped diamond nanoindentation tips. Journal of Materials Research 26, 3051–3057 (2011). https://doi.org/10.1557/jmr.2011.377

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.377

Navigation