Skip to main content
Log in

Structural transformations in nano- and microobjects triggered by disclinations

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Crystalline pentagonal nano- and microrods (PRs) and pentagonal nano- and microparticles (PPs) with 5-fold symmetry are studied. Structure of PRs and PPs and their elastic distortions are characterized in the framework of the disclination approach. Relaxation of mechanical stresses due to disclinations causes structural transformations in PRs and PPs. Experimental evidence of such transformations, namely, the appearance of internal cavities and pores, and growth of whiskers in copper PRs and PPs grown in the process of electrodeposition is demonstrated. A brief review of existing models of stress relaxation in PRs and PPs is presented. We discuss a new model of nanowhisker growth based on the nucleation of two dislocation loops of opposite signs near the surface of the crystal with disclination. As a result, vacancy-type dislocation loop remains in the material and serves as a nucleus for cavity, while the interstitial loop comes to the free surface and contributes to whisker growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S. Ino: Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum J. Phys. Soc. Jpn. 21, 346 (1966).

    Article  CAS  Google Scholar 

  2. H. Hofmeister: Forty years study of fivefold twinned structures in small particles and thin films Cryst. Res. Technol. 33, 3 (1998).

    Article  CAS  Google Scholar 

  3. V.G. Gryaznov, J. Heydenreich, A.M. Kaprelov, S.A. Nepijko, A.E. Romanov, and J. Urban: Pentagonal symmetry and disclinations in small particles Cryst. Res. Technol. 34, 1091 (1999).

    Article  CAS  Google Scholar 

  4. M.J. Yacaman, J.A. Ascencio, H.B. Liu, and J.-T. Gardeaorresday: Structure shape and stability of nanometric sized particles J. Vac. Sci. Technol, B 19, 1091 (2001).

    Article  CAS  Google Scholar 

  5. K. Koga and K. Sugawara: Population statistics of gold nanoparticle morphologies: Direct determination by HREM observations Surf. Sci. 529, 23 (2003).

    Article  CAS  Google Scholar 

  6. A.A. Vikarchuk and A.P. Volenko: Pentagonal copper crystals: Various growth shapes and specific features of their internal structure Phys. Solid State 47, 352 (2005).

    Article  CAS  Google Scholar 

  7. I.S. Yasnikov: Elastic stress relaxation in pentagonal fine particles and crystallites of electrolytic origin Tech. Phys. Lett. 52, 666 (2007).

    CAS  Google Scholar 

  8. D. Seo, C.I. Yoo, I.S. Chung, S.M. Park, S. Ryu, and S. Hyunjoon: Shape adjustment between multiply twinned and single-crystalline polyhedral gold nanocrystals: Decahedra, icosahedra, and truncated tetrahedra J. Phys. Chem. C 112, 2469 (2008).

    Article  CAS  Google Scholar 

  9. Z. Tang and N.A. Kotov: One-dimensional assemblies of nanoparticles: Preparation, properties, and promise Adv. Mater. 17, 951 (2005).

    Article  CAS  Google Scholar 

  10. De R. Wit: Partial disclinations J. Phys. Chem. 5, 529 (1972).

    Google Scholar 

  11. A. Howie and L.D. Marks: Elastic strains and the energy balance for multiply twinned particles Philos. Mag. A 49, 95 (1984).

    Article  CAS  Google Scholar 

  12. V.G. Gryaznov, A.M. Kaprelov, A.E. Romanov, and I.A. Polonsky: Channels of relaxation of elastic stresses in pentagonal nanoparticles Phys. Status Solidi B 167, 441 (1991).

    Article  Google Scholar 

  13. L.D. Marks: Experimental studies of small particle structures Rep. Prog. Phys. 57, 603 (1994).

    Article  CAS  Google Scholar 

  14. A.E. Romanov and V.I. Vladimirov: Disclinations in crystalline solids, in: Dislocations in Solids, edited by F.R.N. Nabarro Vol. 9 (North-Holland, Amsterdam, 1992) p.191.

    Google Scholar 

  15. A.E. Romanov and A.L. Kolesnikova: Application of disclination concept to solid structures Prog. Mater. Sci. 54, 740 (2009).

    Article  CAS  Google Scholar 

  16. L.M. Dorogin, S. Vlassov, A.L. Kolesnikova, I. Kink, R. Lohmus, and A.E. Romanov: Crystal mismatched layers in pentagonal nanorods and nanoparticles Phys. Status Solidi B 247 (2), 288 (2010).

    Article  CAS  Google Scholar 

  17. A.E. Romanov, I.A. Polonsky, V.G. Gryaznov, S.A. Nepijko, T. Junghanns, and N.I. Vitrykhovski: Voids and channels in pentagonal crystals J. Cryst. Growth 129, 691 (1993).

    Article  CAS  Google Scholar 

  18. A.L. Kolesnikova and A.E. Romanov: Stress relaxation in pentagonal whiskers Tech. Phys. Lett. 33 (10), 886 (2007).

    Article  CAS  Google Scholar 

  19. A.I. Mikhailin and A.E. Romanov: Amorphization of a disclination core Sov. Phys. Solid State 28, 337 (1986).

    Google Scholar 

  20. V.V. Rybin: Large Plastic Deformations and Fracture of Metals (Metalurgia, Moscow, 1986) [in Russian].

    Google Scholar 

  21. M.O. Peach: Mechanism of growth of whiskers on cadmium J. Appl. Phys. 23, 1401 (1952).

    Article  CAS  Google Scholar 

  22. J.D. Eshelby: A tentative theory of metallic whisker growth Phys. Rev. 91, 755 (1953).

    Article  Google Scholar 

  23. U. Lindborg: A model for the spontaneous growth of zinc, cadmium and tin whiskers Acta Metall. 24 (2), 181 (1976).

    Article  CAS  Google Scholar 

  24. K.N. Tu and J.C.M. Li: Spontaneous whisker growth on lead-free solder finishes Mater. Sci. Eng, A 409, 131 (2005).

    Article  Google Scholar 

  25. J.-H. Zhao, P. Su, M. Ding, S. Chopin, and P.S. Ho: Microstructure-based stress modeling of tin whisker growth IEEE Trans. Electron. Packag. Manuf. 29, 265 (2006).

    Article  CAS  Google Scholar 

  26. J. Smetana: Theory of tin whisker growth: The end game IEEE Trans. Electron. Packag. Manuf. 30, 11 (2007).

    Article  CAS  Google Scholar 

  27. A.L. Kolesnikova and A.E. Romanov: Circular Dislocation-Disclination loops and Their Application to Solution of the Boundary Value Problems in the Theory of Defects (USSR Academy of Sciences, Leningrad, 1986) [in Russian].

    Google Scholar 

  28. A.L. Kolesnikova and A.E. Romanov: Virtual circular dislocation-disclination loop technique in boundary value problems in the theory of defects J. Appl. Mech. 71, 409 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The support of EU HF PIIF-GA-2008–220419 from Marie Curie program is acknowledged. The work was also partly supported by Estonian Science Foundation Grant 8420 and Estonian Nanotechnology Competence Centre (EU29996).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid M. Dorogin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romanov, A.E., Vikarchuk, A.A., Kolesnikova, A.L. et al. Structural transformations in nano- and microobjects triggered by disclinations. Journal of Materials Research 27, 545–551 (2012). https://doi.org/10.1557/jmr.2011.372

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.372

Navigation