Skip to main content
Log in

The effect of carbon impurities on lightly doped MOCVD GaN Schottky diodes

  • Invited Feature Papers
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Schottky diodes have been fabricated on metalorganic chemical vapor deposition GaN epitaxial layers grown on sapphire substrates. Carbon impurities limit the ability of these films to be used in high-power devices. Although its effect can be mitigated by growing the films at higher pressure, higher flow rates, and larger V/III ratios, it still effectively limits the net carrier concentration to ~10 cm−3 and therefore the breakdown voltage to ~1200 V by acting as a compensating deep acceptor for n-type material. The net carrier concentration is smaller than the carbon concentration indicating that not all of the carbon occupies a nitrogen site acting as a deep acceptor. It is not known whether some of the carbon occupies gallium sites acting as a donor, interstitial sites creating states in the midgap region, and/or is tied up in the large number of dislocations in the films where it is not electrically active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. J.C. Zolper: A review of junction field effect transistors for high-temperature and high-power electronics. Solid-State Electron. 42, 2153 (1998).

    Article  CAS  Google Scholar 

  2. Y. Saitoh, K. Sumiyoshi, M. Okada, T. Horii, T. Miyazaki, H. Shiomi, M. Ueno, K. Katayama, M. Kiyama, and T. Nakamura: Extremely low on-resistance and high breakdown voltage observed in vertical GaN Schottky-barrier diodes with high-mobility drift layers on low-dislocation density GaN substrates. Appl. Phys. Exp. 3, 081001 (2010).

    Article  Google Scholar 

  3. A. Nishikawa, K. Kumakura, T. Akasaka, and T. Makimoto: Current-voltage characteristics of p-InGaN/n-GaN vertical conducting diodes on n+-SiC substrates. Appl. Phys. Lett. 87, 233505 (2005).

    Article  Google Scholar 

  4. W.J. Choyke and G. Pensl: Physical properties of SiC. MRS Bull. 22 (3), 25 (1997).

    Article  CAS  Google Scholar 

  5. B.J. Baliga: Fundamentals of Power Semiconductor Devices (Springer Science, New York, NY, 2008), p. 15.

    Book  Google Scholar 

  6. P. Vennéguès, B. Beaumont, S. Haffouz, M. Vaille, and P. Gibart: Influence of in situ sapphire surface preparation and carrier gas on the growth mode of GaN in MOVPE. J. Cryst. Growth 187, 167 (1998).

    Article  Google Scholar 

  7. J.E. Northrup: Screw dislocations in GaN: The Ga-filled core model. Appl. Phys. Lett. 78, 2288 (2001).

    Article  CAS  Google Scholar 

  8. I. Arslan and N.D. Browning: Role of oxygen at screw dislocations in GaN. Phys. Rev. Lett. 91, 165501 (2003).

    Article  CAS  Google Scholar 

  9. S.M. Sze and K.K. Ng: Physics of Semiconductor Devices (Wiley-Interscience, Hoboken, NJ, 2007), pp. 134–190.

    Google Scholar 

  10. C.H. Seager, A.F. Wright, J. Yu, and W. Gotz: Role of carbon in GaN. J. Appl. Phys. 92, 6553 (2002).

    Article  CAS  Google Scholar 

  11. S. Hashimoto, Y. Yoshizumi, T. Tanabe, and M. Kiyama: High-purity GaN epitaxial layers for power devices on low-dislocation-density GaN substrates. J. Cryst. Growth 298, 871 (2007).

    Article  CAS  Google Scholar 

  12. S. Lyons, A. Janotti, and C.G. Van de Walle: Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 97, 152108 (2010).

    Article  Google Scholar 

  13. D.D. Koleske, A.E. Wickenden, R.L. Henry, and M.E. Twigg: Influence of MOVPE growth conditions on carbon and silicon concentrations in GaN. J. Cryst. Growth 242, 55 (2002).

    Article  CAS  Google Scholar 

  14. A.F. Wright: Substitutional and interstitial carbon in wurtzite GaN. J. Appl. Phys. 92, 2575 (2002).

    Article  CAS  Google Scholar 

  15. A. Armstrong, C. Poblenz, D.S. Green, U.K. Mishra, J.S. Speck, and S.A. Ringel: Impact of substrate temperature on the mechanism of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 88, 082114 (2006).

    Article  Google Scholar 

  16. Z.Z. Bandic, P.M. Bridger, E.C. Piquette, T.C. McGill, R.P. Vaudo, and J.M. Redwing: High voltage (450 V) GaN Schottky rectifiers. Appl. Phys. Lett. 74, 1266 (1999).

    Article  CAS  Google Scholar 

  17. Y. Zhou, D. Wang, C. Ahyi, C-C. Tin, J. Williams, M. Park, N.M. Williams, and A. Hanser: High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate. Solid-State Electron. 50, 1744 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randy P. Tompkins.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tompkins, R.P., Walsh, T.A., Derenge, M.A. et al. The effect of carbon impurities on lightly doped MOCVD GaN Schottky diodes. Journal of Materials Research 26, 2895–2900 (2011). https://doi.org/10.1557/jmr.2011.360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.360

Navigation