Skip to main content
Log in

Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the ultimate bending strengths of as-grown Si and fully oxidized Si nanowires (NWs) were investigated by using a new atomic force microscopy (AFM) bending method. NWs dispersed on Si substrates were bent into hook and loop configurations by AFM manipulation. The adhesion between NWs and the substrate provided sufficient restraint to retain NWs in imposed bent states and allowed subsequent AFM imaging. The stress and friction force distributions along the bent NWs were calculated based on the in-plane configurations of the NWs in the AFM images. As revealed from the last-achieved bending state, before fracture, fracture strengths close to the ideal strength of materials were attained in these measurements: 17.3 GPa for Si NWs and 6.2 GPa for fully oxidized Si NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. X. Duan, C. Niu, V. Sahi, J. Chen, J.W. Parce, S. Empedocles, and J.L. Goldman: High-performance thin-film transistors using semiconductor nanowires and nanoribbons Nature 425, 274 (2003).

    Article  CAS  Google Scholar 

  2. M.C. McAlpine, R.S. Friedman, S. Jin, K.-H. Lin, W.U. Wang, and C.M. Lieber: High-performance nanowire electronics and photonics on glass and plastic substrates Nano Lett. 3, 1531 (2003).

    Article  CAS  Google Scholar 

  3. F. Xu, W. Lu, and Y. Zhu: Controlled 3D buckling of silicon nanowires for stretchable electronics ACS Nano 5, 672 (2011).

    Article  CAS  Google Scholar 

  4. Y. Huang, X. Duan, and C.M. Lieber: Nanowires for integrated multicolor nanophotonics Small 1, 142 (2005).

    Article  CAS  Google Scholar 

  5. R.R. He and P.D. Yang: Giant piezoresistance effect in silicon nanowires Nat. Nanotechnol. 1, 42 (2006).

    Article  CAS  Google Scholar 

  6. X.L. Feng, R. He, P. Yang, and M.L. Roukes: Very high frequency silicon nanowire electromechanical resonators Nano Lett. 7, 1953 (2007).

    Article  CAS  Google Scholar 

  7. N.A. Kotov, J.O. Winter, I.P. Clements, E. Jan, B.P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C.M. Lieber, M. Prato, R.V. Bellamkonda, G.A. Silva, N.W.S. Kam, F. Patolsky, and L. Ballerini: Nanomaterials for neural interfaces Adv. Mater. 21, 3970 (2009).

    Article  CAS  Google Scholar 

  8. Z.L. Wang and J.H. Song: Piezoelectric nanogenerators based on zinc oxide nanowire arrays Science 312, 242 (2006).

    Article  CAS  Google Scholar 

  9. B. Tian, X. Zheng, T.J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C.M. Lieber: Coaxial silicon nanowires as solar cells and nanoelectronic power sources Nature 449, 885 (2007).

    Article  CAS  Google Scholar 

  10. Z. Huang, H. Fang, and J. Zhu: Fabrication of silicon nanowire arrays with controlled diameter, length, and density Adv. Mater. 19, 744 (2007).

    Article  CAS  Google Scholar 

  11. K. Peng, M. Zhang, A. Lu, N.-B. Wong, R. Zhang, and S.-T. Lee: Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching Appl. Phys. Lett. 90, 163123 (2007).

    Article  CAS  Google Scholar 

  12. M. Morales and C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  13. I. Hochbaum, R. Fan, R. He, and P. Yang: Controlled growth of Si nanowire arrays for device integration Nano Lett. 5, 457 (2005).

    Article  CAS  Google Scholar 

  14. S. Hoffmann, I. Utke, B. Moser, J. Michler, S.H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele, and C. Ballif: Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires Nano Lett. 6, 622 (2006).

    Article  CAS  Google Scholar 

  15. X. Han, K. Zheng, Y. Zhang, X. Zhang, Z. Zhang, and Z.L. Wang: Low-temperature in situ large-strain plasticity of silicon nanowires Adv. Mater. 19, 2112 (2007).

    Article  CAS  Google Scholar 

  16. Y. Zhu, F. Xu, Q. Qin, W.Y. Fung, and W. Lu: Mechanical properties of vapor-liquid-solid synthesized silicon nanowires Nano Lett. 9, 3934 (2009).

    Article  CAS  Google Scholar 

  17. G. Stan, S. Krylyuk, A.V. Davydov, and R.F. Cook: Compressive stress effect on the radial elastic modulus of oxidized Si nanowires Nano Lett. 10, 2031 (2010).

    Article  CAS  Google Scholar 

  18. B. Lee and R.E. Rudd: First-principle calculation of mechanical properties of Si<001> nanowires and comparison to nanomechanical theory Phys. Rev. B 75, 195328 (2007).

    Article  CAS  Google Scholar 

  19. P.W. Leu, A. Svizhenko, and K. Cho: Ab initio calculations of mechanical and electronic properties of strained Si nanowires Phys. Rev. B 77, 235305 (2008).

    Article  CAS  Google Scholar 

  20. S.S. Wong, P.E. Sheehan, and C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  21. O. Lourie, D.M. Cox, and H.D. Wagner: Buckling and collapse of embedded carbon nanotubes Phys. Rev. Lett. 81, 1638 (1998).

    Article  CAS  Google Scholar 

  22. I.-A. Kaplanshiri, S.R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H.D. Wagner, and R. Tenne: On the mechanical behavior of WS2 nanotubes under axial tension and compression Proc. Natl. Acad. Sci. USA 103, 523 (2006).

    Article  CAS  Google Scholar 

  23. T. Zhu, J. Li, S. Ogata, and S. Yip: Mechanics of ultra-strength materials MRS Bull. 34, 167 (2009).

    Article  CAS  Google Scholar 

  24. D.K. Felbeck and A.G. Atkins: Strength and Fracture of Engineering Solids (Prentice-Hall, Englewood Cliffs, NJ, 1984).

    Google Scholar 

  25. A. Kelly and N.H. Macmillan: Strong Solids, 3rd ed. (Oxford University Press, New York, 1986).

    Google Scholar 

  26. R.F. Cook: Strength and sharp contact fracture of silicon J. Mater. Sci. 41, 841 (2006).

    Article  CAS  Google Scholar 

  27. T. Namazu, Y. Isono, and T. Tanaka: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM J. Microelectromech. Syst. 9, 450 (2000).

    Article  Google Scholar 

  28. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, and R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load Science 287, 637 (2000).

    Article  CAS  Google Scholar 

  29. B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires Nat. Mater. 4, 295 (2005).

    Google Scholar 

  30. L.T. Ngo, D. Almecija, J.E. Sader, B. Daly, N. Petkov, J.D. Holmes, D. Erts, and J.J. Boland: Ultimate-strength germanium nanowires Nano Lett. 6, 2964 (2006).

    Article  CAS  Google Scholar 

  31. G. Brambilla and D.N. Payne: The ultimate strength of glass silica nanowires Nano Lett. 9, 831 (2009).

    Article  CAS  Google Scholar 

  32. G. Richter, K. Hillerich, D.S. Gianola, R. Mönig, O. Kraft, and C.A. Volkert: Ultrahigh strength single crystalline nanowhiskers grown by physical vapor deposition Nano Lett. 9, 3048 (2009).

    Article  CAS  Google Scholar 

  33. M.J. Gordon, T. Baron, F. Dhalluin, P. Gentile, and P. Ferret: Size effects in mechanical deformation and fracture of cantilevered silicon nanowires Nano Lett. 9, 525 (2009).

    Article  CAS  Google Scholar 

  34. S. Johansson, J.-A. Schweitz, L. Tenerz, and J. Tiren: Fracture testing of silicon microelements in situ in a scanning electron microscope J. Appl. Phys. 63, 4799 (1988).

    Article  CAS  Google Scholar 

  35. C.J. Wilson, A. Ormeggi, and M. Narbutovskih: Fracture testing of silicon microcantilever beams J. Appl. Phys. 79, 2386 (1996).

    Article  CAS  Google Scholar 

  36. D.A. Smith, V.C. Holmberg, and B.A. Korgel: Flexible germanium nanowires: Ideal strength, room temperature plasticity, and bendable semiconductor fabric ACS Nano 4, 2356 (2010).

    Article  CAS  Google Scholar 

  37. M.-A. Tabibzar, M. Nassirou, R. Wang, S. Sharma, T.I. Kamins, M.S. Islam, and R.S. Williams: Mechanical properties of self-welded silicon nanobridges Appl. Phys. Lett. 87, 113102 (2005).

    Article  CAS  Google Scholar 

  38. S.S. Walavalkar, A.P. Homyk, M.D. Henry, and A. Scherer: Controllable deformation of silicon nanowires with strain up to 24 % J. Appl. Phys. 107, 124314 (2010).

    Article  CAS  Google Scholar 

  39. K. Zheng, X. Han, L. Wang, Y. Zhang, Y. Yue, Y. Qin, X. Zhang, and Z. Zhang: Atomistic mechanisms governing the elastic limit and the incipient plasticity of bending Si nanowires Nano Lett. 9, 2471 (2009).

    Article  CAS  Google Scholar 

  40. P.W. France, M.J. Paradine, M.H. Reeve, and G.R. Newns: Liquid nitrogen strengths of coated optical glass fibers J. Mater. Sci. 15, 825 (1980).

    Article  CAS  Google Scholar 

  41. M.J. Matthewson and C.R. Kurkjian: Strength measurement of optical fibers by bending J. Am. Ceram. Soc. 69, 815 (1986).

    Article  CAS  Google Scholar 

  42. S. Krylyuk, A.V. Davydov, I. Levin, A. Motayed, and M.D. Vaudin: Rapid thermal oxidation of silicon nanowires Appl. Phys. Lett. 94, 063113 (2009).

    Article  CAS  Google Scholar 

  43. M.C. Strus, R.R. Lahiji, P. Ares, V. Lopez, A. Raman, and R. Reifenberger: Strain energy and lateral friction force distribution of carbon nanotubes manipulated into shapes by atomic force microscopy Nanotechnology 20, 385709 (2009).

    Article  CAS  Google Scholar 

  44. B. Tummers: DataThief III, http://datathief.org/.

  45. L.D. Landau and E.M. Lifshitz: Theory of Elasticity, Vol. 7, 3rd ed. (Oxford,, Butterworth-Heinemann, 1986), p. 65.

    Google Scholar 

  46. S. Timoshenko: Strength of Materials, Part I, 2nd ed. (D. Van Nostrand Comp, Inc.), p. 90 (1930).

    Google Scholar 

  47. M. Bordag, A. Ribayrol, G. Conache, L.E. Fröberg, S. Gray, L. Samuelson, L. Montelius, and H. Pettersson: Shear stress measurements on InAs nanowires by AFM manipulation Small 3, 1398 (2007).

    Article  CAS  Google Scholar 

  48. G. Conache, S.M. Gray, A. Ribayrol, L.E. Fröberg, L. Samuelson, H. Pettersson, and L. Montelius: Friction measurements of InAs nanowires on silicon nitride by AFM manipulation Small 5, 203 (2009).

    Article  CAS  Google Scholar 

  49. S. Wu, X. Fu, X. Hu, and X. Hu: Manipulation and behavior modeling of one-dimensional nanomaterials on a structured surface Appl. Surf. Sci. 256, 4738 (2010).

    Article  CAS  Google Scholar 

  50. K. Zheng, C. Wang, Y.Q. Cheng, Y. Yue, X. Han, Z. Zhang, Z. Shan, S.X. Mao, M. Ye, Y. Yin, and E. Ma: Electron-beam-assisted superplastic shaping of nanoscale amorphous silica Nat. Commun. 1, 24 (2010).

    Article  CAS  Google Scholar 

  51. V. Hatty, H. Kahn, and A.H. Heuer: Fracture toughness, fracture strength, and stress-corrosion cracking of silicon dioxide thin films J. Microelectromech. Syst. 17, 943 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Cook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stana, G., Krylyuk, S., Davydov, A.V. et al. Bending manipulation and measurements of fracture strength of silicon and oxidized silicon nanowires by atomic force microscopy. Journal of Materials Research 27, 562–570 (2012). https://doi.org/10.1557/jmr.2011.354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.354

Navigation