Skip to main content
Log in

Tetraoctylthio- and tetraoctyloxy-substituted lead phthalocyanines: Synthesis, characterization, liquid-crystalline properties, and thin film studies

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Peripherally and nonperipherally tetrakisoctylthio- and tetrakisoctyloxy-substituted lead(II) phthalocyanines (PbPcs) were synthesized and characterized using elemental analysis, nuclear magnetic resonance, ultra violet-visible (UV-Vis), infrared (IR), and mass spectroscopies. The mesogenic properties of PbPcs were studied by differential scanning calorimetry, polarized optical microscopy, and x-ray diffraction. The effects of the substitution position and nature of linkage heteroatom on the liquid-crystalline properties and the orientation of the molecules were also studied. Visible absorption spectroscopy yielded an evidence of a thermally induced molecular reorganization in the films. Reflection-absorption IR spectroscopy was used to study the preferential orientation of molecules relative to the substrate surface. The intense bands in the IR spectra of the PbPcs were assigned with the aid of quantum chemical (density functional theory) computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1.
FIG. 1.
TABLE I.
TABLE II.
FIG. 2.
TABLE III.
FIG. 3.
TABLE IV.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. N.B. McKeown: Phthalocyanine Materials: Synthesis, Structure, Function (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  2. J. Simon and P. Bassoul: Design of Molecular Materials: Supramolecular Engineering (Wiley-VCH, Weinheim, 2000).

    Google Scholar 

  3. R.D. Gould and T.S. Shafai: Conduction in lead phthalocyanine films with aluminium electrodes. Thin Solid Films 373, 89 (2000).

    Article  CAS  Google Scholar 

  4. M. Ahmida, R. Larocque, M.S. Ahmed, A. Vacaru, B. Donnio, D. Guillonb, and S.H. Eichhorn: Halide effect in electron rich and deficient discotic phthalocyanines. J. Mater. Chem. 20, 1292 (2010).

    Article  CAS  Google Scholar 

  5. H. Eichhorn: Mesomorphic phthalocyanines, tetraazaporphyrins, porphyrins and triphenylenes as charge-transporting materials. J. Porphyrins Phthalocyanines 4, 88 (2000).

    Article  CAS  Google Scholar 

  6. H. Eichhorn, D.W. Bruce, and D. Wöhrle: Amphitropic mesomorphic phthalocyanines: A new approach to highly ordered layers. Adv. Mater. 10, 419 (1998).

    Article  CAS  Google Scholar 

  7. S. Ambily, F.P. Xavier, and C.S. Menon: Photoconductivity measurements in lead phthalocyanine thin films. Mater. Lett. 41, 5 (1999).

    Article  CAS  Google Scholar 

  8. E.M. García-Frutos, G. de la Torre, P. Vázquez, J.S. Shirk, and T. Torres: Synthesis and optical properties of regioisomerically pure alkynyl-bridged bis(phthalocyanines). Eur. J. Org. Chem. 2009, 3212 (2009).

    Article  CAS  Google Scholar 

  9. D.K. Modibane and T. Nyokong: Synthesis, photophysical and nonlinear optical properties of microwave synthesized 4-tetra and octa-substituted lead phthalocyanines. Polyhedron 28, 1475 (2009).

    Article  CAS  Google Scholar 

  10. A. Rodriguez, M.E.S. Vergara, V.G. Montalvo, A. Ortiz, and J.R. Alvarez: Thin films of molecular materials synthesized from C32H20N10M (M = Co, Pb, Fe): Film formation, electrical and optical properties. Appl. Surf. Sci. 256, 3374 (2010).

    Article  CAS  Google Scholar 

  11. C. Piechocki, J.C. Boulou, and J. Simon: Discotic mesogens possessing an electrical dipole moment perpendicular to the molecular plane: Synthesis and mesomorphic properties. Mol. Cryst. Liq. Cryst. 149, 115 (1987).

    Article  CAS  Google Scholar 

  12. P.M. Burnham, M.J. Cook, L.A. Gerrard, M.J. Heeney, and D.L. Hughes: Structural characterization of a red phthalocyanine. Chem. Commun. 34, 2064 (2003).

    Article  CAS  Google Scholar 

  13. A.W. Snow and N.L. Jarvis: Molecular association and monolayer formation of soluble phthalocyanine compounds. J. Am. Chem. Soc. 106, 4706 (1984).

    Article  CAS  Google Scholar 

  14. W.T. Ford, L. Sumner, W. Zhu, Y.H. Chang, P.J. Um, K.H. Choi, P.A. Heiney, and N.C. Maliszewskyj: Liquid crystalline octa-(2-ethylhexyloxy) platinum and lead phthalocyanines. N. J. Chem. 18, 495 (1994).

    CAS  Google Scholar 

  15. C. Piechocki, J. Simon, A. Skoulios, D. Gullion, and P. Weber: Annelides. 7. Discotic mesophases obtained from substituted metallophthalocyanines. Toward liquid crystalline one-dimensional conductors. J. Am. Chem. Soc. 104, 5245 (1982).

    Article  CAS  Google Scholar 

  16. J.F. van der Pol, E. Neeleman, J.W. Zwikker, R.J.M. Nolte, W. Drenth, J. Aerts, R. Visser, and S.J. Picken: Homologous series of liquid-crystalline metal free and copper octa- n alkoxyphthalocyanines. Liq. Cryst. 6, 577 (1989).

    Article  Google Scholar 

  17. Y. Bian, L. Li, J. Dou, D.Y.Y. Cheng, R. Li, C. Ma, D.K.P. Ng, N. Kobayashi, and J. Jiang: Synthesis, structure, spectroscopic properties and electrochemistry of (1,8,15,22-tetrasubstituted phthalocyaninato)lead complexes. Inorg. Chem. 43, 7539 (2004).

    Article  CAS  Google Scholar 

  18. H.A. Dinçer, H. Çerlek, A. Gül, and M.B. Koçak: Synthesis and spectral properties of tetra- and octa-substituted lead phthalocyanines. Main Group Chem. 4, 209 (2005).

    Article  CAS  Google Scholar 

  19. B.N. Achar, T.M.M. Kumar, and K.S. Lokesh: A comparative study of microwave versus conventional synthesis of lead phthalocyanine complexes. J. Porphyrins Phthalocyanines 9, 872 (2005).

    Article  CAS  Google Scholar 

  20. M. Hanack, A. Beck, and H. Lehmann: Synthesis of liquid crystalline phthalocyanines. Synthesis 8, 703 (1987).

    Article  Google Scholar 

  21. Q. Duan, H. Xia, D. Liu, F. Wang, S. Toshifumi, and K. Toyoji: Preparation and optical properties of reverse saturable absorption polymer with alkoxy phthalocyanine Pb. Proc. SPIE Int. Soc. Opt. Eng. 6028, 602819 (2005).

    Google Scholar 

  22. T. Basova, A.G. Gürek, D. Atilla, A.K. Hassan, and V. Ahsen: Synthesis and characterization of new mesomorphic octakis(alkylthio)-substituted lead phthalocyanines and their films. Polyhedron 26, 5045 (2007).

    Article  CAS  Google Scholar 

  23. P. Weber, D. Guillon, and A. Skoulios: Antiferroelectric stacking in lead phthalocyanine columnar mesophases. J. Phys. Chem. A 91, 2242 (1987).

    Article  CAS  Google Scholar 

  24. M. Hanack, A. Gül, A. Hirsch, K. Braja, L.R. Subramanian, and E. Witke: Synthesis and characterization of soluble phthalocyanines: Structure-property relationship. Liq. Cryst. 187, 365 (1990).

    Google Scholar 

  25. M.K. Engel, P. Bassoul, L. Bosio, H. Lehmann, M. Hanack, and J. Simon: Mesomorphic molecular materials. Influence of chain length on the structural properties of octa-alkyl substituted phthalocyanines. Liq. Cryst. 15, 709 (1993).

    Article  CAS  Google Scholar 

  26. D. Atilla, A.G. Gürek, T.V. Basova, V.G. Kiselev, A. Hassan, L.A. Sheludyakova, and V. Ahsen: The synthesis and characterization of novel mesomorphic octa- and tetra-alkylthio-substituted lead phthalocyanines and their films. Dyes Pigments 88, 280 (2011).

    Article  CAS  Google Scholar 

  27. D. Masurel, C. Sirlin, and J. Simon: Annelides. 21. Highly ordered columnar liquid crystal obtained from new octasubstituted phthalocyanine mesogen. N. J. Chem. 11, 455 (1987).

    CAS  Google Scholar 

  28. K. Ohta, L. Jacquemin, C. Sirlin, L. Bosio, and J. Simon: Influence of the nature of the side-chains on the mesomorphic properties of octasubstituted phthalocyanine derivatives. Annelides-XXIX. N. J. Chem. 12, 751 (1988).

    CAS  Google Scholar 

  29. Y. Suda, K. Shigehara, A. Yamada, H. Matsuda, S. Okada, and A. Masaki: Reversible phase transition and third order nonlinearity of phthalocyanine derivatives. Proc. SPIE Int. Soc. Opt. Eng. 1560, 75 (1991).

    CAS  Google Scholar 

  30. K. Ozoemena and T. Nyokong: Octabutylthiophthalocyaninatoiron(II): Electrochemical properties and interaction with cyanide. Dalton Trans. 8, 1806 (2002).

    Article  CAS  Google Scholar 

  31. A.G. Gürek, M. Durmus, and V. Ahsen: Synthesis and mesomorphic properties of tetra-and octa-substituted phthalocyanines. N. J. Chem. 28, 693 (2004).

    Article  Google Scholar 

  32. Y. Zhang, X. Zhang, Z. Liu, Y. Bian, and J. Jiang: Structures and properties of 1,8,15,22-tetrasubstituted phthalocyaninato-lead complexes: The substitution effect study based on density-functional theory calculations. J. Phys. Chem. A 109, 6363 (2005).

    Article  CAS  Google Scholar 

  33. B. del Rey, U. Keller, T. Torres, G. Rojo, F. Agullo-Lopez, S. Nonell, C. Mart, S. Brasselet, I. Ledoux, and J. Zyss: Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. J. Am. Chem. Soc. 120, 12808 (1998).

    Article  Google Scholar 

  34. H. Berneth, F.K. Bruder, R. Hagen, K. Hassenrueck, S. Kostromine, C.M. Krueger, T. Meyer-Friedrichsen, J.W. Stawitz, R. Oser, and O. Falkner: Method for preparing 3-alkoxyphthalocyanines from alcohols and 3-nitrophthalocyanine in the presence of a base. European Patent EP1424323 (2004).

    Google Scholar 

  35. D.D. Perin and W.L. Armarego: Purification of Laboratory Chemicals (Pergamon Press, Oxford, 1989).

    Google Scholar 

  36. A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648 (1993).

    Article  CAS  Google Scholar 

  37. P.J. Hay and W.R. Wadt: Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82, 299 (1985).

    Article  CAS  Google Scholar 

  38. M.J.T. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Jr. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople: Gaussian 03, Revision E.01 (Gaussian, Inc., Wallingford, CT, 2004).

  39. K. Ukei: Lead phthalocyanine. Acta Crystallogr. B 29, 2290 (1973).

    Article  CAS  Google Scholar 

  40. K. Iyechika, Y. Yakushi, I. Ikemoto, and H. Kuroda: Structure of lead phthalocyanine (Triclinic Form). Acta Crystallogr. B 38, 766 (1982).

    Article  Google Scholar 

  41. J. Mack and M.J. Stillman: Photochemical formation of the anion radical of zinc phthalocyanine and analysis of the absorption and magnetic circular dichroism spectral data. Assignment of the optical spectrum of [ZnPc(-3)]-. J. Am. Chem. Soc. 116, 1292 (1994).

    Article  CAS  Google Scholar 

  42. M. Konami, M. Hatano, and A. Tajiri: Inter-ring overlap integrals in dimer complexes of phthalocyanines and porphyrins. Chem. Phys. Lett. 166, 605 (1990).

    Article  CAS  Google Scholar 

  43. K. Ohta, K. Hatsusaka, M. Sugibayashi, M. Ariyoshi, K. Ban, F. Maeda, R. Naito, K. Nishizawa, A.M. van de Craats, and J.M. Warman: Discotic liquid crystalline semiconductors. Mol. Cryst. Liq. Cryst. 397, 25 (2003).

    Article  Google Scholar 

  44. M.J. Cook, D.A. Mayes, and R.H. Poynter: Spectroscopic monitoring of thermally induced molecular reorganisations within spin-coated and Langmuir-Blodgett films of mesogenic phthalocyanines. J. Mater. Chem. 5, 2233 (1995).

    Article  CAS  Google Scholar 

  45. M.J. Cook: Advances in spectroscopy, in Spectroscopy of New Materials, edited by R.J.H. Clark and R.E. Hester (Wiley, Chichester, 1993), p. 87.

    Google Scholar 

  46. J.R.G. Mizuguchi and H.R. Karfunkel: Solid-state spectra of titanylphthalocyanine as viewed from molecular distortion. J. Phys. Chem. 99, 16217 (1995).

    Article  CAS  Google Scholar 

  47. A. Miyamoto, K. Nichogi, A. Taomoto, T. Nambu, and M. Murakami: Structural control of evaporated lead-phthalocyanine films. Thin Solid Films 256, 64 (1995).

    Article  CAS  Google Scholar 

  48. N. Coppede, T. Toccoli, A. Pallaoro, F. Siviero, K. Walzer, M. Castriota, E. Cazzanelli, and S. Iannotta: Polymorphism and phase control in titanyl phthalocyanine thin films grown by supersonic molecular beam deposition. J. Phys. Chem. A 111, 12550 (2007).

    Article  CAS  Google Scholar 

  49. J. Sleven, T. Cardinaels, K. Binnemans, D. Guillon, and B. Donnio: Thermal and optical behaviour of octa-alkoxy substituted phthalocyaninatovanadyl complexes. Liq. Cryst. 29, 1425 (2002).

    Article  CAS  Google Scholar 

  50. M.J. Cook: Thin film formulations of substituted phthalocyanines. J. Mater. Chem. 6, 677 (1996).

    Article  CAS  Google Scholar 

  51. T. Del Cano, V. Parra, M.L. Rodriguez-Mendez, R.F. Aroca, and J.A. De Saja: Characterization of evaporated trivalent and tetravalent phthalocyanines films: Different degree of organization. Appl. Surf. Sci. 246, 327 (2005).

    Article  CAS  Google Scholar 

  52. M.K. Debe: Optical probes of organic thin films: Photons-in and Photons-out. Prog. Surf. Sci. 24, 1 (1987).

    Article  CAS  Google Scholar 

  53. B.E. Hayden: Vibrational Spectroscopy of Molecules on Surfaces, Methods of Surface Characterization (Plenum Press, New York, 1987).

    Google Scholar 

  54. T. Basova, A.G. Gürek, and V. Ahsen: Investigation of liquid-crystalline behavior of nickel octakisalkylthiophthalocyanines and orientation of their films. Mater. Sci. Eng., C 22, 99 (2002).

    Article  Google Scholar 

  55. V. de Cupere, J. Tant, P. Viville, R. Lazzaroni, W. Osikowicz, W.R. Salaneck, and Y.H. Geerts: Effect of interfaces on the alignment of a discotic liquid crystalline phthalocyanine. Langmuir 22, 7798 (2006).

    Article  CAS  Google Scholar 

  56. T.V. Basova, M. Durmus, A.G. Gürek, V. Ahsen, and A.K. Hassan: Effect of interface on the orientation of the liquid crystalline nickel phthalocyanine films. J. Phys. Chem. C 113, 19251 (2009).

    Article  CAS  Google Scholar 

  57. S. Sergeyev, W. Pisula, and Y.H. Geerts: Discotic liquid crystals: A new generation of organic semiconductors. Chem. Soc. Rev. 36, 1902 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Durmuş.

Supplementary Material

Supplementary Material

Supplementary materials can be viewed in this issue of the Journal of Materials Research by visiting http://journals.cambridge.org/jmr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuncel, S., Basova, T.V., Kiselev, V.G. et al. Tetraoctylthio- and tetraoctyloxy-substituted lead phthalocyanines: Synthesis, characterization, liquid-crystalline properties, and thin film studies. Journal of Materials Research 26, 2962–2973 (2011). https://doi.org/10.1557/jmr.2011.350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.350

Navigation