Skip to main content
Log in

Effect of microstructural heterogeneity on the mechanical behavior of nanocrystalline metal films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Conventionally, mean grain size is considered the most critical microstructural parameter in determining the mechanical behavior of pure metals. By systematically controlling the distribution of grain orientations in aluminum films, we show that microstructural heterogeneity alone induces large variation in the mechanical behavior of nanocrystalline metal films. Aluminum films with relatively homogeneous microstructure (all grains with identical out-of-plane orientation) show substantially less early Bauschinger effect compared to films with heterogeneous microstructure, irrespective of film thickness or grain size. On the other hand, the films with homogeneous microstructure show relatively higher yield stresses. A direct correspondence is found between the nonuniformity of plastic deformation and early Bauschinger effect, which confirms the critical role of microstructural heterogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

REFERENCES

  1. E.O. Hall: The deformation and ageing of mild steel: III. Discussion of results. Proc. Phys. Soc. B 64(9), 747 (1951).

    Article  Google Scholar 

  2. N.J. Petch: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 25 (1953).

    CAS  Google Scholar 

  3. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  4. H. Van Swygenhoven and J.R. Weertman: Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006).

    Article  Google Scholar 

  5. M. Legros, D.S. Gianola, and K.J. Hemker: In situ tem observations of fast grain-boundary motion in stressed nanocrystalline aluminum films. Acta Mater. 56, 3380 (2008).

    Article  CAS  Google Scholar 

  6. L. Lu, M.L. Sui, and K. Lu: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287, 1463 (2000).

    CAS  Google Scholar 

  7. Z. Jiang, X. Liu, G. Li, Q. Jiang, and J. Lian: Strain rate sensitivity of a nanocrystalline cu synthesized by electric brush plating. Appl. Phys. Lett. 88, 143115 (2006).

    Article  Google Scholar 

  8. X. Wu, Y.T. Zhu, M.W. Chen, and E. Ma: Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scr. Mater. 54, 16851690 (2006).

    Google Scholar 

  9. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  10. Y.M. Wang, A.V. Hamza, and E. Ma: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).

    Article  CAS  Google Scholar 

  11. K. Zhang, J.R. Weertman, and J.A. Eastman: Rapid stress-driven grain coarsening in nanocrystalline cu at ambient and cryogenic temperatures. Appl. Phys. Lett. 87, 061921 (2005).

    Article  Google Scholar 

  12. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

    Article  CAS  Google Scholar 

  13. J. Rajagopalan, J.H. Han, and M.T.A. Saif: Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315, 1831 (2007).

    Article  CAS  Google Scholar 

  14. J. Rajagopalan, J.H. Han, and M.T.A. Saif: On plastic strain recovery in freestanding nanocrystalline metal films. Scr. Mater. 59, 921 (2008).

    Article  CAS  Google Scholar 

  15. G. Saada: Hall-Petch revisited. Mater. Sci. Eng., A 400, 146 (2005).

    Article  Google Scholar 

  16. E. Bitzek, P.M. Derlet, P.M. Anderson, and H. Van Swygenhoven: The stress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations. Acta Mater. 56, 4846 (2008).

    Article  CAS  Google Scholar 

  17. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  18. X. Li, Y. Wei, W. Yang, and H. Gao: Competing grain-boundary-and dislocation-mediated mechanisms in plastic strain recovery in nanocrystalline aluminum. Proc. Natl. Acad. Sci. U.S.A. 106, 16108 (2009).

    Article  CAS  Google Scholar 

  19. I. Lonardelli, J. Almer, G. Ischia, C. Menapace, and A. Molinari: Deformation behavior in bulk nanocrystalline-ultrafine aluminum: In situ evidence of plastic strain recovery. Scr. Mater. 60, 520 (2009).

    Article  CAS  Google Scholar 

  20. H. Niwa and M. Kato: Epitaxial growth of Al on Si (001) by sputtering. Appl. Phys. Lett. 59, 543 (1991).

    Article  CAS  Google Scholar 

  21. J.H. Han and M.T.A. Saif: In situ microtensile stage for electromechanical characterization of nanoscale freestanding films. Rev. Sci. Instrum. 77, 045102 (2006).

    Article  Google Scholar 

  22. Y. Xiang and J.J. Vlassak: Bauschinger and size effects in thin-film plasticity. Acta Mater. 54, 5449 (2006).

    Article  CAS  Google Scholar 

  23. J. Rajagopalan, J.H. Han, and M.T.A. Saif: Bauschinger effect in unpassivated freestanding nanoscale metal films. Scr. Mater. 59, 734 (2008).

    Article  CAS  Google Scholar 

  24. S.P. Baker, A. Kretschmann, and E. Arzt: Thermomechanical behavior of different texture components in cu thin films. Acta Mater. 49, 2145 (2001).

    Article  CAS  Google Scholar 

  25. N. Christodoulou, O.T. Woo, and S.R. Macewen: Effect of stress reversals on the work hardening behaviour of polycrystalline copper. Acta Metall. 34, 1553 (1986).

    Article  Google Scholar 

  26. O.B. Pedersen, L.M. Brown, and W.M. Stobbs: The Bauschinger effect in copper. Acta Metall. 29, 1843 (1981).

    Article  CAS  Google Scholar 

  27. S. Berbenni, V. Favier, and M. Berveiller: Impact of the grain size distribution on the yield stress of heterogeneous materials. Int. J. Plast. 23, 114 (2007).

    Article  CAS  Google Scholar 

  28. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  29. B. Zhu, R.J. Asaro, P. Krysl, and R. Bailey: Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals. Acta Mater. 53, 4825 (2005).

    Article  CAS  Google Scholar 

  30. B. Zhu, R.J. Asaro, P. Krysl, and R. Bailey: Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II. Acta Mater. 54, 3307 (2006).

    Article  CAS  Google Scholar 

  31. S.S. Shishvan, L. Nicola, and E. Van der Giessen: Bauschinger effect in unpassivated freestanding thin films. J. Appl. Phys. 107, 093529 (2010).

    Article  Google Scholar 

  32. L. Thilly, P.O. Renault, S. Van Petegem, S. Brandstetter, B. Schmitt, H. Van Swygenhoven, V. Vidal, and F. Lecouturier: Evidence of internal Bauschinger test in nanocomposite wires during in situ macroscopic tensile cycling under synchrotron beam. Appl. Phys. Lett. 90, 241907 (2007).

    Article  Google Scholar 

  33. L. Thilly, S. Van Petegem, P-O. Renault, F. Lecouturier, V. Vidal, B. Schmitt, and H. Van Swygenhoven: A new criterion for elasto-plastic transition in nanomaterials: Application to size and composite effects on CuNb nanocomposite wires. Acta Mater. 57, 3157 (2009).

    Article  CAS  Google Scholar 

  34. J. Rajagopalan, C. Rentenberger, H.P. Karnthaler, G. Dehm, and M.T.A. Saif: In situ TEM study of microplasticity and Bauschinger effect in nanocrystalline metals. Acta Mater. 58, 4772 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation under Award No. NSF CMMI-0728189. The aluminum specimens were fabricated in Micro-NanoMechanical Systems Cleanroom and Micro Nano Technology Laboratory at the University of Illinois at Urbana-Champaign (UIUC). The experiments were performed at the Beckman Institute at UIUC. Discussions with Prof. Christian Rentenberger regarding the TEM analysis of the films are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Taher A. Saif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, J., Saif, M.T.A. Effect of microstructural heterogeneity on the mechanical behavior of nanocrystalline metal films. Journal of Materials Research 26, 2826–2832 (2011). https://doi.org/10.1557/jmr.2011.316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.316

Keywords

Navigation