Skip to main content
Log in

Graphene oxide nanoplatelets of different crystallinity synthesized from helical-ribbon carbon nanofibers and multiwall carbon nanotubes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene oxide nanoplatelets (GONPs) were obtained by unraveling helical-ribbon carbon nanofibers (HR-CNF) using a modified Hummers and Offeman method in conjunction with ultrasonication. In this account, we carry out a complete evaluation of the effect of different oxidative agent concentrations on the resulting platelet materials. Transmission electron microscopy, atomic force microscopy, Fourier transform infrared, x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis were performed to carefully characterize GONPs resulting from the oxidative process. Comparative experiments using multiwall carbon nanotubes (MWCNTs) and graphite were also carried out. Our studies suggest that the oxidation treatment is more effective in HR-CNFs than in MWCNTs. Furthermore, the unraveling of HR-CNFs results in GONPs consisting of less stacked layers when compared to other starting materials such as graphite. Therefore, HR-CNFs appear to be excellent precursors to produce few-layered GONPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
TABLE II.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. L. Tapaszto, G. Dobrik, P. Lambin, and L.P. Biro: Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 3 (7), 397 (2008).

    Article  CAS  Google Scholar 

  2. X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H.J. Rader, and K. Mullen: Two-dimensional graphene nanoribbons. J. Am. Chem. Soc. 130 (13), 4216 (2008).

    Article  CAS  Google Scholar 

  3. J. Campos-Delgado, J.M. Romo-Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, and M. Terrones: Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 8 (9), 2773 (2008).

    Article  CAS  Google Scholar 

  4. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45 (7), 1558 (2007).

    Article  CAS  Google Scholar 

  5. S. Horiuchi, T. Gotou, M. Fujiwara, T. Asaka, T. Yokosawa, and Y. Matsui: Single graphene sheet detected in a carbon nanofilm. Appl. Phys. Lett. 84 (13), 2403 (2004).

    Article  CAS  Google Scholar 

  6. G. Chen, W. Weng, D. Wu, C. Wu, J. Lu, P. Wang, and X. Chen: Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42 (4), 753 (2004).

    Article  CAS  Google Scholar 

  7. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, and J.M. Tour: Improved synthesis of graphene oxide. ACS Nano. 4 (8), 4806 (2010).

    Article  CAS  Google Scholar 

  8. A.K. Geim: Graphene: Status and prospects. Science 324 (5934), 1530 (2009).

    Article  CAS  Google Scholar 

  9. D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett, G. Evmenenko, S.T. Nguyen, and R.S. Ruoff: Preparation and characterization of graphene oxide paper. Nature 448 (7152), 457 (2007).

    Article  CAS  Google Scholar 

  10. J.J. Mack, L.M. Viculis, O.M. Mayer, H.T. Hahn, R.B. Kaner: Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15, 974 (2005).

    Article  Google Scholar 

  11. H.C. Schniepp, J-L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, and I.A. Aksay: Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 110, 8535 (2006).

    Article  CAS  Google Scholar 

  12. D.C. Elias, R.R. Nair, T.M.G. Mohiuddin, S.V. Morozov, P. Blake, M.P. Halsall, A.C. Ferrari, D.W. Boukhvalov, M.I. Katsnelson, A.K. Geim, and K.S. Novoselov: Control of graphene’s properties by reversible hydrogenation: Evidence for graphane. Science 323 (5914), 610 (2009).

    Article  CAS  Google Scholar 

  13. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458 (7240), 872 (2009).

    Article  CAS  Google Scholar 

  14. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai: Narrow graphene nanoribbons from carbon nanotubes. Nature 458 (7240), 877 (2009).

    Article  CAS  Google Scholar 

  15. F. Cataldo, G. Compagnini, G. Patané, O. Ursini, G. Angelini, P.R. Ribic, G. Margaritondo, A. Cricenti, G. Palleschi, and F. Valentini: Graphene nanoribbons produced by the oxidative unzipping of single-wall carbon nanotubes. Carbon 48 (9), 2596 (2010).

    Article  CAS  Google Scholar 

  16. A.L. Elías, A.R. Botello-Méndez, D. Meneses-Rodríguez, V. Jehová González, D. Ramírez-González, L. Ci, E. Muñoz-Sandoval, P.M. Ajayan, H. Terrones, and M. Terrones: Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels. Nano Lett. 10 (2), 366 (2009).

    Article  Google Scholar 

  17. K. Kim, A. Sussman, and A. Zettl: Graphene nanoribbons obtained by electrically unwrapping carbon nanotubes. ACS Nano. 4 (3), 1362 (2010).

    Article  CAS  Google Scholar 

  18. A.G. Cano-Márquez, F.J. Rodríguez-Macías, J. Campos-Delgado, C.G. Espinosa-Gonzalez, F. Tristán-López, D. Ramírez-González, D.A. Cullen, D.J. Smith, M. Terrones, and Y.I. Vega-Cantu: Ex-MWNTs: Graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett. 9 (4), 1527 (2009).

    Article  Google Scholar 

  19. M. Terrones: Materials science: Nanotubes unzipped. Nature 458 (7240), 845 (2009).

    Article  CAS  Google Scholar 

  20. W. Hummers and R. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  21. H. Varela-Rizo, I. Rodriguez-Pastor, C. Merino, and I. Martin-Gullon: Highly crystalline graphene oxide nano-platelets produced from helical-ribbon carbon nanofibers. Carbon 48 (12), 3640 (2010).

    Article  CAS  Google Scholar 

  22. J. Vera-Agullo, H. Varela-Rizo, J.A. Conesa, C. Almansa, C. Merino, and I. Martin-Gullon: Evidence for growth mechanism and helix-spiral cone structure of stacked-cup carbon nanofibers. Carbon 45 (14), 2751 (2007).

    Article  CAS  Google Scholar 

  23. GANF: http://www.grupoantolin.com/contenido1.asp?idioma=ES.

  24. I. Martin-Gullon, J. Vera, J.A. Conesa, J.L. Gonzalez, and C. Merino: Differences between carbon nanofibers produced using Fe and Ni catalysts in a floating catalyst reactor. Carbon 44 (8), 1572 (2006).

    Article  CAS  Google Scholar 

  25. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, and J. Chen: Continuous production of aligned carbon nanotubes: A step closer to commercial realization. Chem. Phys. Lett. 303 (5–6), 467 (1999).

    Article  CAS  Google Scholar 

  26. D.N. Jacques and R.N. Andrews: Process for the continuous production of aligned carbon nanotubes. US Patent, 2007.

    Google Scholar 

  27. G. Chen, W. Weng, D. Wu, and C. Wu: PMMA/graphite nanosheets composite and its conducting properties. Eur. Polym. J. 39 (12), 2329 (2003).

    Article  CAS  Google Scholar 

  28. H-K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M-H. Park, K.H. An, I.J. Kim, C-W. Yang, C.Y. Park, R.S. Ruoff, and Y.H. Lee: Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 130 (4), 1362 (2008).

    Article  CAS  Google Scholar 

  29. Y. Si and E.T. Samulski: Synthesis of water soluble graphene. Nano Lett. 8 (6), 1679 (2008).

    Article  CAS  Google Scholar 

  30. F. Cataldo: Structural analogies and differences between graphite oxide and C60 and C70 polymeric oxides (Fullerene Ozopolymers). Fullerenes Nanotubes Carbon Nanostruct. 11 (1), 1 (2003).

    Article  CAS  Google Scholar 

  31. L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, and J. Judek: Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J. Alloy compd. 501 (1), 77 (2010).

    Article  CAS  Google Scholar 

  32. R.J. Nemanich and S.A. Solin: First- and second-order Raman scattering from finite-size crystals of graphite. Phys. Rev. B 20 (2), 392 (1979).

    Article  CAS  Google Scholar 

  33. T.C. Chieu, M.S. Dresselhaus, and M. Endo: Raman studies of benzene-derived graphite fibers. Phys. Rev. B 26 (10), 5867 (1982).

    Article  CAS  Google Scholar 

  34. X. Zhao, Q. Zhang, D. Chen, and P. Lu: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43 (5), 2357 (2010).

    Article  CAS  Google Scholar 

  35. R.J. Waltman, J. Pacansky, and C.W. Bates: X-ray photoelectron spectroscopic studies on organic photoconductors: Evaluation of atomic charges on chlorodiane blue and p-(diethylamino)benzaldehyde diphenylhydrazone. Chem. Mater. 5 (12), 1799 (1993).

    Article  CAS  Google Scholar 

  36. K. Kalaitzidou, H. Fukushima, and L.T. Drzal: Mechanical properties and morphological characterization of exfoliated graphite-polypropylene nanocomposites. Composites Part A 38 (7), 1675 (2007).

    Article  Google Scholar 

  37. T.G. Ros, A.J. van Dillen, J.W. Geus, and D.C. Koningsberger: Surface oxidation of carbon nanofibres. Chemistry 8 (5), 1151 (2002).

    Article  CAS  Google Scholar 

  38. J. Smith, R. Milton, S.W. Hedges, R. LaCount, D. Kern, N. Shah, G.P. Huffman, and B. Bockrath: Selective oxidation of single-walled carbon nanotubes using carbon dioxide. Carbon 41 (6), 1221 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

HVR thanks the Spanish Ministry of Education, FPU program. MT thanks JST-Japan for funding the Research Center for Exotic NanoCarbons, under the Japanese regional Innovation Strategy Program by the Excellence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Terrones.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varela-Rizo, H., Rodriguez-Pastor, I., Merino, C. et al. Graphene oxide nanoplatelets of different crystallinity synthesized from helical-ribbon carbon nanofibers and multiwall carbon nanotubes. Journal of Materials Research 26, 2632–2641 (2011). https://doi.org/10.1557/jmr.2011.272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.272

Navigation