Skip to main content
Log in

Dielectric relaxations of high-k poly(butylene succinate) based all-organic nanocomposite films for capacitor applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-dielectric constant all-organic composite films consisting of polyaniline (PANI) filler and poly(butylene succinate) host were synthesized by simple blending process. The chemical structures and morphology of the composite films were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy, respectively. The dielectric properties of the composite films with different filler concentrations were studied in the frequency range of 100–106 Hz. A percolation phenomenon was observed in the composite films with a percolation threshold vc = 19.7% and the dielectric constant was 10 times that of the pure host material. The enhancement in the dielectric constant can be ascribed to Maxwell–Wagner–Sillars polarization and the low-dielectric loss to good dispersion of PANI filler in the host. As the host polymer is biodegradable, it may be applied as a “green” dielectric material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.S. Nalwa: Handbook of Low and High Dielectric Constant Materials and Their Applications (Academic Press, San Diego, 1999).

    Google Scholar 

  2. S.M. Ke and H.T. Huang: Giant low frequency dielectric tunability in high-k Ba(Fe1/2Nb1/2)O-3 ceramics at room temperature. J. Appl. Phys. 108, 064104 (2010).

    Article  CAS  Google Scholar 

  3. S.M. Ke, H.Q. Fan, and H.T. Huang: Dielectric relaxation in A(2)FeNbO(6) (A = Ba, Sr, and Ca) perovskite ceramics. J. Electroceram. 22, 252 (2009).

    Article  CAS  Google Scholar 

  4. P. Thomas, K.T. Varughese, K. Dwarakanath, and K.B.R Varma: Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539 (2010).

    Article  CAS  Google Scholar 

  5. S. George and M.T. Sebastian: Three-phase polymer–ceramic–metal composite for embedded capacitor applications. Compos. Sci. Technol. 69, 1298 (2009).

    Article  CAS  Google Scholar 

  6. S.U. Adikarya, H.L.W Chana, C.L. Choya, B. Sundaravelb, and I.H. Wilsonb: Characterisation of proton irradiated Ba0.65Sr0.35TiO3/P(VDF-TrFE) ceramic–polymer composites. Compos. Sci. Technol. 62, 2161 (2002).

    Article  Google Scholar 

  7. Y.H. Zhang, S.M. Ke, H.T. Huang, L.H. Zhao, L. Yu, and H.L.W Chan: Dielectric relaxation in polyimide nanofoamed films with low-dielectric constant. Appl. Phys. Lett. 92, 052910 (2008).

    Article  CAS  Google Scholar 

  8. Q.M. Zhang, H. Li, M. Poh, Z.Y. Cheng, H.S. Xu, F. Xia, and C. Huang: An all-organic composite actuator material with a high-dielectric constant. Nature 419, 284 (2002).

    Article  CAS  Google Scholar 

  9. C. Huang, Q.M. Zhang, and J. Su: High-dielectric constant all-polymer percolative composites. Appl. Phys. Lett. 82, 3502 (2003).

    Article  CAS  Google Scholar 

  10. C. Huang and Q.M. Zhang: Fully functionalized high-dielectric constant nanophase polymers with high electromechanical response. Adv. Mater. 17, 1153 (2005).

    Article  CAS  Google Scholar 

  11. S.M. Ke, H.T. Huang, L. Ren, and Y.J. Wang: Nearly constant dielectric loss behavior in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biodegradable polyester. J. Appl. Phys. 105, 096103 (2009).

    Article  CAS  Google Scholar 

  12. Y. Ichikawa, J. Suzuki, J. Washiyama, Y. Moteki, K. Noguchi, and K. Okuyama: Stain-induced crystal modification in poly(tetramethylene succinate). Polymer 35, 3338 (1994).

    Article  CAS  Google Scholar 

  13. H.J. Tai: Dielectric spectroscopy of poly(butylene succinate) films. Polymer 48, 4558 (2007).

    Article  CAS  Google Scholar 

  14. Y.F. Shih, L.S. Chen, and R.J. Jeng: Preparation and properties of biodegradable PBS/multi-walled carbon nanotube nanocomposites. Polymer 49, 4602 (2008).

    Article  CAS  Google Scholar 

  15. Z.M. Zhang, Z.X. Wei, and M.X. Wan: Nanostructures of polyaniline doped with inorganic acids. Macromolecules 35, 5937 (2002).

    Article  CAS  Google Scholar 

  16. J. Huang and M. Wan: Polyaniline doped with different sulfonic acids by in situ doping polymerization. J. Polym. Sci. Part A: Polym. Chem. 37, 151 (1999).

    Article  CAS  Google Scholar 

  17. S.S. Ray, K. Okamoto, and M. Okamoto: Structure-property relationship in biodegradable poly(butylene succinate)/layered silicate nanocomposites. Macromolecules 36, 2355 (2003).

    Article  CAS  Google Scholar 

  18. K. Nakamura, T. Saiwaki, and K. Fukao: Dielectric relaxation behavior of polymerized ionic liquid. Macromolecules 43, 6092 (2010).

    Article  CAS  Google Scholar 

  19. E. Malmstrom, A. Hult, U.W. Gedde, F. Liu, and R.H. Boyd: Relaxation processes in hyperbranched polyesters: Influence of terminal groups. Polymer 38, 4873 (1997).

    Article  CAS  Google Scholar 

  20. T. Tatsumi, E. Ito, and R. Hayakawa: Study of the dielectric beta-relaxation in poly(ethylene-terephthalate) and ethylene isophthalate terephthalate copolyesters. J. Polym. Sci., Part B: Polym. Phys. 30, 701 (1992).

    Article  CAS  Google Scholar 

  21. S.M. Ke, H.Q. Fan, and H.T. Huang: Revisit of the Vogel-Fulcher freezing in lead magnesium niobate relaxors. Appl. Phys. Lett. 97, 132905 (2010).

    Article  CAS  Google Scholar 

  22. Y. Ichikawa, J. Washiyama, Y. Moteki, K. Noguchi, and K. Okuyama: Crystal modification in poly(ethylene succinate). Polym. J. 27, 1230 (1995).

    Article  CAS  Google Scholar 

  23. J. Wang, Q. Shen, H. Bao, C. Yang, and Q. Zhang: Microstructure and dielectric properties of P(VDF-TrFE-CFE) with partially grafted copper phthalocyanine oligomer. Macromolecules 38, 2247 (2005).

    Article  CAS  Google Scholar 

  24. E. Dantras, J. Dandurand, and C. Lacabanne: TSC and broadband dielectric spectroscopy studies of the a relaxation in phosphorus-containing dendrimers. Macromolecules 37, 2812 (2004).

    Article  CAS  Google Scholar 

  25. H.J. Tai: Interfacial polarization phenomenon in the recrystallization of poly(butylene succinate). Polymer 49, 2328 (2008).

    Article  CAS  Google Scholar 

  26. S.M. Ke, H.T. Huang, S.H. Yu, and L.M. Zhou: Crossover from a nearly constant loss to a superlinear power-law behavior in Mn-doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ferroelectrics. J. Appl. Phys. 107, 084112 (2010).

    Article  CAS  Google Scholar 

  27. P.A.M Steeman and J. van Turnhout: Fine-structure in the parameters of dielectric and viscoelastic relaxations. Macromolecules 27, 5421 (1994).

    Article  CAS  Google Scholar 

  28. M. Wubbenhorst and J. van Turnhout: Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J. Non-Cryst. Solids 305, 40 (2002).

    Article  CAS  Google Scholar 

  29. Z. Qiu, T. Ikehara, and T. Nishi: Poly(butylene succinate)/poly(vinyl phenol) blends. Part 1. Miscibility and crystallization. Polymer 44, 8111 (2003).

    Article  CAS  Google Scholar 

  30. E.S. Yoo and S.S. Im: Melting behavior of poly(butylene succinate) during heating scan by DSC. J. Polym. Sci., Part B: Polym. Phys. 37, 1357 (1999).

    Article  CAS  Google Scholar 

  31. C.W. Nan, Y. Shen, and J. Ma: Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131 (2010).

    Article  CAS  Google Scholar 

  32. Q. Li, Q.Z. Xue, L.H. Hao, X.L. Gao, and Q.B. Zheng: Large dielectric constant of the chemically functionalized carbonnanotube/polymer composites. Compos. Sci. Technol. 68, 2290 (2008).

    Article  CAS  Google Scholar 

  33. B.K. Zhu, S.H. Xie, Z.K. Xu, and Y.Y. Xu: Preparation and properties of the polyimide/multi-walledcarbon nanotubes (MWNTs) nanocomposites. Compos. Sci. Technol. 66, 548 (2006).

    Article  CAS  Google Scholar 

  34. D. Stauffer: Introduction to Percolation Theory (Taylor & Francis, London, 1992).

    Google Scholar 

  35. C.C. Wang, J.F. Song, H.M. Bao, Q. Shen, and C. Yang: Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv. Funct. Mater. 18, 1299 (2008).

    Article  CAS  Google Scholar 

  36. J.Y. Li, L. Zhang, and S. Ducharme: Electric energy density of dielectric nanocomposites. Appl. Phys. Lett. 90, 132901 (2007).

    Article  CAS  Google Scholar 

  37. J.Y. Li, C. Huang, and Q.M. Zhang: Enhanced electromechanical properties in all-polymer percolative composites. Appl. Phys. Lett. 84, 3124 (2004).

    Article  CAS  Google Scholar 

  38. M. Hori and S. Nematnasser: Bounds and estimates of overall moduli of composites with periodic microstructure. Mech. Mater. 14, 189 (1993).

    Article  Google Scholar 

  39. S. Krause and K. Bohon: Electromechanical response of electrorheological fluids and poly(dimethylsiloxane) networks. Macromolecules 34, 7179 (2001).

    Article  CAS  Google Scholar 

  40. J.Y. Li: Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys. Rev. Lett. 90, 217601 (2003).

    Article  CAS  Google Scholar 

  41. S. Bhadra and D. Khastgir: Glass-rubber transition temperature of polyaniline: Experimental and molecular dynamic simulation. Synth. Met. 159, 1141 (2009).

    Article  CAS  Google Scholar 

  42. J.P. Calame: Finite difference simulations of permittivity and electric field statistics in ceramic-polymer composites for capacitor applications. J. Appl. Phys. 99, 084101 (2006).

    Article  CAS  Google Scholar 

  43. J. Yuan, Z.M. Dang, S. Yao, J. Zha, T. Zhou, S. Li, and J. Bai: Fabrication and dielectric properties of advanced high permittivity polyaniline/poly(vinylidene fluoride) nanohybrid films with high energy storage density. J. Mater. Chem. 20, 2441 (2010).

    Article  CAS  Google Scholar 

  44. Z.M. Dang, Y. Lin, and C.W. Nan: Novel ferroelectric polymer composites with high-dielectric constants. Adv. Mater. 15, 1625 (2003).

    Article  CAS  Google Scholar 

  45. Z.M. Dang, L. Wang, Y. Yin, Q. Zhang, and Q.Q. Lei: Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19, 852 (2007).

    Article  CAS  Google Scholar 

  46. C. Huang and Q.M. Zhang: Enhanced dielectric and electromechanical responses in high-dielectric constant all-polymer percolative composites. Adv. Funct. Mater. 14, 501 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is jointly supported by the project of the Fundamental Research Funds for the Central Universities (2011PY0180, 2011PY0179, 2011PY0181), the Key Project of Chinese Ministry of Education (Project No. 107023), the Hong Kong Polytechnic University (Project Nos.A-PJ46, A-PK30, and A-SA11) and the special co-construction project of Beijing City Education Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihe Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, L., Ke, S., Zhang, Y. et al. Dielectric relaxations of high-k poly(butylene succinate) based all-organic nanocomposite films for capacitor applications. Journal of Materials Research 26, 2493–2502 (2011). https://doi.org/10.1557/jmr.2011.271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.271

Navigation