Skip to main content
Log in

Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded wafers

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanoindentation was used to examine the impact of impurities and grain boundaries on the mechanical properties of a “model” (110)/(100) grain boundary (GB) interface prepared using direct silicon bonding via the hybrid orientation technique of (110) and (100) p-type silicon wafers. Remarkable differences were found between the mechanical behavior of Fe- and Cu-contaminated samples. The direct silicon bonded wafers contaminated with either Fe or Cu showed opposite effects on mechanical properties, with Fe enhancing the silicon hardness, while Cu contamination induces a gradual weakening. High-resolution transmission electron microscopy was used to verify that the abrupt hardness changes observed during increasing nanoindentation loading is attributed to local deformation induced by the GB interface, Cu precipitate colony induced dislocations, and the abrupt crystallographic orientation change across the GB. The resulting dislocation loop generation facilitated the deformation process during nanoindentation and therefore softened the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. I. Yonenaga and K. Sumino: Mechanical strength of silicon crystals as a function of the oxygen concentration. J. Appl. Phys. 56, 2346 (1984).

    Article  CAS  Google Scholar 

  2. A. Spitznagel, R.G. Seidensticker, S.Y. Lien, and R.H. Hopkins, in: Oxygen, Carbon, Hydrogen, and Nitrogen in Silicon, Mater. Res. Soc. Symp. Proc., Eds. J.C. Mikkelsen, S.J. Pearton, J.W. Corbett, and S.J. Pennycook. Pennington, NJ, 383 (1986).

  3. F. Shimura and R.S. Hockett: Nitrogen effect on oxygen precipitation in Czochralski silicon. Appl. Phys. Lett. 48, 224 (1986).

    Article  CAS  Google Scholar 

  4. D. Ge, A.M. Minor, E.A. Stach, and J.W. Morris Jr.: Size effects in the nanoindentation of silicon at ambient temperature. Phil Mag. 86, 4069 (2006).

    Article  Google Scholar 

  5. K. Sumino, I. Yonenaga, M. Imai, and T. Abe: Effects of nitrogen on dislocation behavior and mechanical strength in silicon crystals. J. Appl. Phys. 54, 5016 (1983).

    Article  CAS  Google Scholar 

  6. S.M. Hu and W.J. Patrick: Effect of oxygen on dislocation movement in silicon. J. Appl. Phys. 46, 1869 (1975).

    Article  CAS  Google Scholar 

  7. J.D. Murphy, A. Giannattasio, C.R. Alpass, S. Senkader, R.J. Falster, and P.R. Wilshaw: The influence of nitrogen on dislocation locking in float-zone silicon. Solid State Phenom. 108, 139 (2005).

    Article  Google Scholar 

  8. M. Yang, W.C. Chan, K.K. Chan, L. Shi, D.M. Fried, J.H. Stathis, A.I. Chou, E. Gusev, J.A. Ott, L.E. Burns, M.V. Fischetti, and M. Ieong: Hybrid-orientation technology (HOT): Opportunities and challenges. IEEE Trans. Elec. Dev., 53, 965 (2006).

    Article  Google Scholar 

  9. G.M. Pharr: Measurements of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A253, 151 (1998).

    Article  CAS  Google Scholar 

  10. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  11. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  12. I. Chasiotis, S.W. Cho, and K. Jonnalagadda: Fracture toughness and subcritical crack growth in polycrystalline silicon. Trans. ASME 73, 714 (2006).

    Article  CAS  Google Scholar 

  13. B.R. Lawn, D.B. Marshall, G.R. Anstis, and T.P. Dabbs: Fatigue analysis of brittle materials using indentation flaws. J. Mater. Sci. 16, 2846 (1981).

    Article  Google Scholar 

  14. B. Lawn and R. Wilshaw: Indentation fracture: Principles and applications. J. Mater. Sci. 10, 1049 (1975).

    Article  Google Scholar 

  15. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  16. Y. Cheng and C. Cheng: Further analysis of indentation loading curves: Effects of tip rounding on mechanical property measurements. J. Mater. Res. 13, 1059 (1998).

    Article  CAS  Google Scholar 

  17. G. Rozgonyi, J. Lu, M. Wagener, X. Yu, Y. Park, and K. Youssef: Enhancing Silicon PV Materials Research via IC Wafer Engineering Defect Science Experiences and Industry/University Consortia: SiWEDS to SiSoC. The 5th Inter. Sympo. Adv. Sci. Tech. Si Mater. Nov. (2008), 323, Hawaii, USA.

  18. F. Ebrahimi and L. Kalwani: Fracture anisotropy in silicon single crystal. Mater. Sci. Eng. A268, 116 (1999).

    Article  CAS  Google Scholar 

  19. B.R. Lawn and M.V. Swain: Microfracture beneath point indentations in brittle solids. J. Mater. Sci. 10, 113 (1975).

    Article  CAS  Google Scholar 

  20. O. Shikimaka and D. Grabco: Deformation created by Berkovich and Vickers indenters and its influence on surface morphology of indentations for LiF and CaF2 single crystals. J. Phys. D: Appl. Phys. 41, 074012 (2008).

    Article  Google Scholar 

  21. J. Chen and S.J. Bull: On the relationship between plastic zone radius and maximum depth during nanoindentation. Surf. Coat. Tech. 201, 4289 (2006).

    Article  CAS  Google Scholar 

  22. J. Jang, M.J. Lance, S. Wen, T.Y. Tsui, and G.M. Pharr: Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).

    Article  CAS  Google Scholar 

  23. V. Domnich, Y. Gogotsi, and S. Dub: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).

    Article  CAS  Google Scholar 

  24. E.R. Weber: Transition metals in silicon. Appl. Phys. A30, 1 (1983).

    Article  CAS  Google Scholar 

  25. M. Seibt, M. Griess, A.A. Istratov, H. Hedemann, A. Sattler, and W. Schroter: Formation and properties of copper silicide precipitates in silicon. Phys. Stat. Sol., 166, 177 (1998).

    Article  Google Scholar 

  26. W.C. Dash: Copper precipitation on dislocations in silicon. J. Appl. Phys. 27, 1193 (1956).

    Article  CAS  Google Scholar 

  27. H. Gottschalk: Precipitation of copper silicide on glide dislocations in silicon at low temperature. Phys. Stat. Sol. 137, 447 (1993).

    Article  CAS  Google Scholar 

  28. Z. Xi, D. Yang, J. Chen, J. Xu, Y. Ji, D. Que, and H. Moeller: Influence of copper precipitation on oxygen precipitation in Czochralski silicon. Semicond. Sci. Tech. 19, 299 (2004).

    Article  CAS  Google Scholar 

  29. A. Broniatowski and C. Haut: The electronic properties of copper-decorated twinned boundaries in silicon. Phil. Mag. Lett. 62, 407 (1990).

    Article  CAS  Google Scholar 

  30. M. Seibt: On the role of stacking-faults in copper precipitation in silicon. Sol. Stat. Phenom., 19, 45 (1991).

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Mike Seacrist of MEMC Electronic Materials, Inc. for providing the DSB wafers. Financial support by the National Science Foundation and Silicon Solar Consortium is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Youssef.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youssef, K., Yu, X., Seacrist, M. et al. Understanding the effect of impurities and grain boundaries on mechanical behavior of Si via nanoindentation of (110)/(100) direct Si bonded wafers. Journal of Materials Research 27, 349–355 (2012). https://doi.org/10.1557/jmr.2011.265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.265

Navigation