Skip to main content
Log in

The effects of low temperature and pressure on the fracture behaviors of organosilicate thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel load–displacement sensing instrument has been designed and fabricated to characterize the fracture properties of brittle thin films at low temperature (approximately −30 °C) and pressure (1.6e-4 Pa) environments. In this study, the instrument was used to investigate the effects of harsh environments on the fracture behaviors of organosilicate glass (OSG) and silicon carbonitride (SiCN) thin films under four-point bend loading. Experimental results showed that the fracture strengths of film stacks are the highest when the environment contains a very low water molecule concentration. This condition can be achieved by purging the testing chamber with pure nitrogen or reducing the chamber pressure to less than 1 Pa. In contrast, cracks propagated readily along OSG/SiCN interfaces when experiments were performed in deionized water. The effects of low temperature (approximately −30 °C) and pressure on thin film fracture were also studied, and the results demonstrated that there is no observed degradation of the OSG fracture properties. X-ray photoelectron spectroscopy (XPS) technique was used to identify the chemical composition of the fracture surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table I
Fig. 8
Fig. 9
Table II
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.L. O’Neill, M.K. Haas, B.K. Peterson, R.N. Vrtis, S.J. Weigel, D. Wu, M.D. Bitner, and E.J. Karwacki: Impact of pore size and morphology of porous organosilicate glasses on integrated circuit manufacturing, in Technology and Reliability of Low-k Dielectrics and Copper Interconnects, edited by T.Y. Tsui, Y.C. Joo, L. Michaelson, M. Lane, and A.A. Volinsky (Mater. Res. Soc. Symp. Proc., Vol. 914, Materials Research Society, Warrendale, PA, 2006), pp. 3–14.

    Google Scholar 

  2. K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma, and Z.S. Yanovitskaya: Low-dielectric constant materials for microelectronics. J. Appl. Phys. 93, 8793 (2003).

    Article  CAS  Google Scholar 

  3. M. Morgen, E.T. Ryan, J.H. Zhao, C. Hu, T. Cho, and P.S. Ho: Low-dielectric constant materials for ULSI interconnects. Annu. Rev. Mater. Sci. 30, 645 (2000).

    Article  CAS  Google Scholar 

  4. E.G. Liniger and R.F. Cook: A controlled flaw technique for lifetime characterization. J. Am. Ceram. Soc. 76, 2123 (1993).

    Article  CAS  Google Scholar 

  5. B.R. Lawn: Diffusion-controlled subcritical crack growth in the presence of a dilute gas environment. Mater. Sci. Eng. 13, 277 (1974).

    Article  CAS  Google Scholar 

  6. S.M. Wiederhorn: Influence of water vapor on crack propagation in soda-lime glass. J. Am. Ceram. Soc. 50, 407 (1967).

    Article  CAS  Google Scholar 

  7. S.M. Wiederhorn and L.H. Bolz: Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 53, 543 (1970).

    Article  CAS  Google Scholar 

  8. S.M. Wiederhorn and H. Johnson: Effect of electrolyte pH on crack propagation in glass. J. Am. Ceram. Soc. 56, 192 (1973).

    Article  CAS  Google Scholar 

  9. S.M. Wiederhorn, E.R. Fuller, and R. Thomson: Micromechanisms of crack growth in ceramics and glasses in corrosive environments. J. Ment. Sci. 14, 450 (1980).

    CAS  Google Scholar 

  10. B.R. Lawn: An atomistic model of kinetic crack growth. J. Mater. Sci. 10, 469 (1975).

    Article  Google Scholar 

  11. R.F. Cook and E.G. Liniger: Stress-corrosion cracking of low-dielectric constant spin-on-glass thin films. J. Electromech. Soc. 146, 4439 (1999).

    Article  CAS  Google Scholar 

  12. S.Y. Kook and R.H. Dauskardt: Moisture-assisted subcritical debonding of a polymer/metal interface. J. Appl. Phys. 91, 1293 (2002).

    Article  CAS  Google Scholar 

  13. M. Lane, R. Dauskardt, Q. Ma, H. Fujimoto, and N. Krishna: Subcritical debonding of multilayer interconnect structures: Temperature and humidity effects, in Materials Realibility in Microelectronics IX, edited by C.A. Volkert, A.H. Verbruggen, and D.D. Brown (Mater. Res. Soc. Symp. Proc., Vol. 563, Warrendale, PA, 1999), pp. 251–256.

    CAS  Google Scholar 

  14. M.W. Lane, J.M. Snodgrass, and R.H. Dauskardt: Environmental effects on interfacial adhesion. Microelectron. Reliab. 41, 1615 (2001).

    Article  Google Scholar 

  15. J.W. Hutchinson and Z. Suo: Mixed mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992).

    Article  Google Scholar 

  16. X.H. Liu, Z. Suo, Q. Ma, and H. Fujimoto: Developing design rules to avert cracking and debonding in integrated circuit structures. Eng. Fract. Mech. 66, 387 (2000).

    Article  Google Scholar 

  17. J.M. Ambrico, E.E. Jones, and M.R. Begley: Cracking in thin multi-layers with finite-width and periodic architectures. Int. J. Solids Struct. 39, 1443 (2002).

    Article  Google Scholar 

  18. X.H. Liu, T.M. Shaw, M.W. Lane, R.R. Rosenberg, S.L. Lane, J.P. Doyle, D. Restaino, S.F. Vogt, and D.C. Edelstein: Channel cracking in low-k films on patterned multi-layers, in Interconnect Technology Conference, June 7–9, 2004, Proceedings of the IEEE 2004 International, pp. 93–95 (2004).

    Google Scholar 

  19. J.J. Vlassak: Channel cracking in thin films on substrates of finite thickness. Int. J. Fract. 119, 299 (2003).

    Article  Google Scholar 

  20. J.J. Vlassak, Y. Lin, and T.Y. Tsui: Fracture of organosilicate glass thin films: Environmental effects. Mater. Sci. Eng., A 391, 159 (2005).

    Article  Google Scholar 

  21. E.P. Guyer, M. Patz, and R.H. Dauskardt: Fracture of nanoporous methyl silsesquioxane thin-film glasses. J. Mater. Res. 21, 882 (2006).

    Article  CAS  Google Scholar 

  22. Y. Lin, T.Y. Tsui, and J.J. Vlassak: Water diffusion and fracture in organosilicate glass film stacks. Acta Mater. 55, 2455 (2007).

    Article  CAS  Google Scholar 

  23. H. Li, Y. Lin, T.Y. Tsui, and J.J. Vlassak: The effect of porogen loading on the stiffness and fracture energy of brittle organosilicates. J. Mater. Res. 24, 107 (2009).

    Article  CAS  Google Scholar 

  24. Y. Lin, Y. Xiang, T.Y. Tsui, and J.J. Vlassak: PECVD low-permittivity organosilicate glass coatings: Adhesion, fracture, and mechanical properties. Acta Mater. 56, 4932 (2008).

    Article  CAS  Google Scholar 

  25. D.A. Maidenberg, W. Volksen, R.D. Miller, and R.H. Dauskardt: Toughening of nanoporous glasses using porogen residuals. Nat. Mater. 3, 464 (2004).

    Article  CAS  Google Scholar 

  26. F. Iacopi, Y. Tavaly, B. Eyckens, C. Waldfried, T. Abell, E.P. Guyer, D.M. Gage, R.H. Dauskardt, T. Sajavaara, K. Houthoofd, P. Grobet, P. Jacobs, and K. Maex: Short-ranged structural rearrangement and enhancement of mechanical properties of organosilicate glasses induced by ultraviolet radiation. J. Appl. Phys. 99, 053511 (2006).

    Article  Google Scholar 

  27. R.S. Smith, T.Y. Tsui, and P.S. Ho: Effects of ultraviolet radiation on ultra-low-dielectric constant thin film fracture properties. J. Mater. Res. 24(9), 2795 (2008).

    Article  Google Scholar 

  28. C.C. Merrill and P.S. Ho: Effect of mode-mixity and porosity on interfacial fracture of low-k dielectrics, in Technology and Reliability for Advanced Interconnects and Low-k Dielectrics, edited by R.J. Carter, C.S. HauRiege, T.M. Lu, and S.E. Schulz (Mater. Res. Soc. Symp. Proc., Vol. 812, Warrendale, PA, 2004), pp. 61–66.

    CAS  Google Scholar 

  29. T.Y. Tsui, A.J. McKerrow, and J.J. Vlassak: The effect of water diffusion on the adhesion of organosilicate glass film stacks. J. Mech. Phys. Solids 54, 887 (2006).

    Article  CAS  Google Scholar 

  30. E.P. Guyer and R.H. Dauskardt: Effects of solution pH on the accelerated cracking of nanoporous thin-film glasses. J. Mater. Res. 20, 680 (2005).

    Article  CAS  Google Scholar 

  31. Y. Lin, J.J. Vlassak, T.Y. Tsui, and A.J. McKerrow: Environmental effects on subcritical delamination of dielectric and metal films from organosilicate glass (OSG) thin films, in Materials, Technology, and Reliability for Advanced Interconnects and Low-k Dielectrics, edited by A.J. McKerrow, J. Leu, and O. Kraft (Mater. Res. Soc. Symp. Proc., Vol. 766, Warrendale, PA, 2003), pp. 171–176.

  32. P.P.L Matos, R.M. McMeeking, P.G. Charalambides, and M.D. Drory: A method for calculating stress intensities in bimaterial fracture. Int. J. Fract. 40, 235 (1989).

    Article  Google Scholar 

  33. P.G. Charalambides, H.C. Cao, J. Lund, and A.G. Evans: Development of a test method for measuring the mixed-mode fracture resistance of bimaterial interfaces. Mech. Mater. 8, 269 (1990).

    Article  Google Scholar 

  34. Q. Ma, H. Fujimoto, P. Flinn, V. Jain, F. Adibi-Rizi, F. Moghadam, and R.H. Dauskardt: Quantitative measurement of interface fracture energy in multi-layer thin film structures, in Materials Reliability in Microelectronics V, edited by W.F. Filter, K. Gadepally, A.L. Greer, A.S. Oates, and R. Rosenberg (Mater. Res. Soc. Symp. Proc., Vol. 391, Warrendale, PA, 1995), pp. 91–96.

    CAS  Google Scholar 

  35. Q. Ma: A four-point bending technique for studying subcritical crack growth in thin films and at interfaces. J. Mater. Res. 12, 840 (1997).

    Article  CAS  Google Scholar 

  36. H. Steinherz: Handbook of High Vacuum Engineering (Reinhold Publishing Corp., New York, 1963).

    Google Scholar 

Download references

Acknowledgments

T.Y. Tsui thanks the Canadian Natural Sciences and Engineering Research Council (NSERC) Discovery, NSERC Research Tools and Instruments, and the Canada Foundation for Innovation for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting Y. Tsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barakat, S., Lee-Sullivan, P., Vitale, S.A. et al. The effects of low temperature and pressure on the fracture behaviors of organosilicate thin films. Journal of Materials Research 26, 2524–2532 (2011). https://doi.org/10.1557/jmr.2011.253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.253

Navigation