Skip to main content
Log in

Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Over the past two decades, nanoindentation has been the most versatile method for mechanical testing at small length scales. Because of large strain gradients, it does not allow for a straightforward identification of material parameters such as yield and tensile strength, though. This represents a major drawback and has led to the development of alternative microscale testing techniques with microcompression as one of the most popular ones today. In this research, the influence of the realistic sample configuration and unavoidable variations in the experimental conditions is studied systematically by combing in-situ microcompression experiments on ultrafine-grained nickel and finite element simulations. It will be demonstrated that neither qualitative let alone quantitative analyses are as straightforward as they may appear, which diminishes the apparent advantages of microcompression testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986 (2004).

    Article  CAS  Google Scholar 

  2. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654 (2011).

    Article  CAS  Google Scholar 

  3. W.D. Nix, J.R. Greer, G. Feng, and E.T. Lilleodden: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515(6), 3152 (2007).

    Article  CAS  Google Scholar 

  4. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron au columns. Philos. Mag. 86(33), 5567 (2006).

    Article  CAS  Google Scholar 

  5. D. Jang and J.R. Greer: Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr. Mater. 64(1), 77 (2011).

    Article  CAS  Google Scholar 

  6. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 293 (2010).

    Article  CAS  Google Scholar 

  7. T.A. Parthasarathy, S.I. Rao, D.M. Dimiduk, M.D. Uchic, and D.R. Trinkle: Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56(4), 313 (2007).

    Article  CAS  Google Scholar 

  8. J. Senger, D. Weygand, P. Gumbsch, and O. Kraft: Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scr. Mater. 58(7), 587 (2008).

    Article  CAS  Google Scholar 

  9. C. Motz, D. Weygand, J. Senger, and P. Gumbsch: Initial dislocation structures in 3-D discrete dislocation dynamics and their influence on microscale plasticity. Acta Mater. 57(6), 1744 (2009).

    Article  CAS  Google Scholar 

  10. J. Senger, D. Weygand, C. Motz, P. Gumbsch, and O. Kraft: Aspect ratio and stochastic effects in the plasticity of uniformly loaded micrometer-sized specimens. Acta Mater. 59(8), 2937 (2011).

    Article  CAS  Google Scholar 

  11. Z.W. Shan, R.K. Mishra, S.A. Syed Asif, O.L. Warren, and A.M. Minor: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7(2), 115 (2008).

    Article  CAS  Google Scholar 

  12. D. Kiener, C. Motz, and G. Dehm: Micro-compression testing: A critical discussion of experimental constraints. Mater. Sci. Eng., A 505(1-2), 79 (2009).

    Article  Google Scholar 

  13. H. Zhang, B.E. Schuster, Q. Wei, and K.T. Ramesh: The design of accurate micro-compression experiments. Scr. Mater. 54(2), 181 (2006).

    Article  CAS  Google Scholar 

  14. C.C. Koch: Ductility in nanostructured and ultra fine-grained materials: Recent evidence for optimism. J. Metastable Nanocryst Mater 18, 9 (2003).

    CAS  Google Scholar 

  15. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: Paradox of strength and ductility in metals processed by severe plastic deformation. J. Mater. Res. 17(1), 5 (2002).

    Article  CAS  Google Scholar 

  16. Y. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  17. L. Lu, L.B. Wang, B.Z. Ding, and K. Lu: High-tensile ductility in nanocrystalline copper. J. Mater. Res. 15(2), 270 (2000).

    Article  CAS  Google Scholar 

  18. K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, and C.C. Koch: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005).

    Article  Google Scholar 

  19. E. Ma: Instabilities and ductility of nanocrystalline and ultrafine-grained metals. Scr. Mater. 49(7), 663 (2003).

    Article  CAS  Google Scholar 

  20. L. Kurmanaeva, J. Ivanisenko, J. Markmann, K. Yang, H-J. Fecht, and J. Weissmüller: Work hardening and inherent plastic instability of nanocrystalline metals. Phys. Status Solidi RRL 4(5–6), 130 (2010).

    Article  CAS  Google Scholar 

  21. Q. Wei, Z.L. Pan, X.L. Wu, B.E. Schuster, L.J. Kecskes, and R.Z. Valiev: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59, 2423 (2011).

    Article  CAS  Google Scholar 

  22. D. Kiener, C. Motz, M. Rester, M. Jenko, and G. Dehm: FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng., A 459(1–2), 262 (2007).

    Article  Google Scholar 

  23. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain rate sensitivity of nanocrystalline nickel. Acta Mater. 51(17), 5159 (2003).

    Article  CAS  Google Scholar 

  24. R. Rabe, J.M. Breguet, P. Schwaller, S. Stauss, F.J. Haug, J. Patscheider, and J. Michler: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469, 470, 206 (2004).

    Article  Google Scholar 

  25. B. Moser, K. Wasmer, L. Barbieri, and J. Michler: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22(4), 1004 (2007).

    Article  CAS  Google Scholar 

  26. D. Tabor: Hardness of Metals (Clarendon Press, Oxford, 1951).

    Google Scholar 

  27. Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang, and T.G. Nieh: Bulk and microscale compressive behavior of a Zr-based metallic glass. Scr. Mater. 58(10), 890 (2008).

    Article  CAS  Google Scholar 

  28. M. Dao, L. Lu, R.J. Asaro, J.T.M.D. Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).

    Article  CAS  Google Scholar 

  29. Y.M. Wang and E. Ma: Strain hardening and strain rate sensitivity of ultrafine-grained metals. J. Metastable Nanocryst. Mater. 17, 55 (2003).

    CAS  Google Scholar 

  30. D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Deformation behavior and plastic instabilities of ultrafine-grained titanium. Appl. Phys. Lett. 79(5), 611 (2001).

    Article  CAS  Google Scholar 

  31. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103 (2000).

    Article  CAS  Google Scholar 

  32. D. Raabe, D. Ma, and F. Roters: Effects of initial orientation, sample geometry and friction on anisotropy and crystallographic orientation changes in single crystal microcompression deformation: A crystal plasticity finite element study. Acta Mater. 55(13), 4567 (2007).

    Article  CAS  Google Scholar 

  33. P.A. Shade, R. Wheeler, Y.S. Choi, M.D. Uchic, D.M. Dimiduk, and H.L. Fraser: A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals. Acta Mater. 57(15), 4580 (2009).

    Article  CAS  Google Scholar 

  34. Y.S. Choi, M.D. Uchic, T.A. Parthasarathy, and D.M. Dimiduk: Numerical study on microcompression tests of anisotropic single crystals. Scr. Mater. 57(9), 849 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Funding by the German Research Foundation DFG (SCH855/4-1) within the DFG Research Group FOR714 is gratefully acknowldged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Schwaiger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwaiger, R., Weber, M., Moser, B. et al. Mechanical assessment of ultrafine-grained nickel by microcompression experiment and finite element simulation. Journal of Materials Research 27, 266–277 (2012). https://doi.org/10.1557/jmr.2011.248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.248

Navigation