Skip to main content
Log in

Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Carbon nanocoils (CNCs) with diameter from 100 to 150 nm have been synthesized by catalytic decomposition of acetylene at 700 °C using Fe–Sn–O catalyst film prepared by a spin-coating method. The CNCs are much smaller in diameter than those synthesized using the catalysts prepared by a sol-gel method and a solution-dipping method. It is found that catalyst films with different morphologies are obtained by changing the spin-coating times, which lead to the formation of different multilayer carbon nanostructures, including CNCs/carbon layer/vertically aligned carbon nanotubes sandwich-like structures, and CNCs/carbon double-layer structures. Based on the experimental results, the growth mechanism of the multilayer carbon nanostructures has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.

Similar content being viewed by others

References

  1. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tomber, A.M. Cassell, and H.J. Dai: Self-oriented regular arrays of carbon nanotubes and their field-emission properties. Science 283, 512 (1999).

    Article  CAS  Google Scholar 

  2. W.B. Choi, D.S. Chung, J.H. Kang, H.Y. Kim, Y.W. Jin, I.T. Han, Y.H. Lee, J.E. Jung, N.S. Lee, G.S. Park, and J.M. Kim: Fully sealed, high-brightness carbon nanotube field emission display. Appl. Phys. Lett. 75, 3129 (1999).

    Article  CAS  Google Scholar 

  3. G.S. Choi, K.H. Son, and D.J. Kim: Fabrication of high performance carbon nanotube field emitters. Microelectron. Eng. 66, 206 (2003).

    Article  CAS  Google Scholar 

  4. P.R. Bandaru, C. Daraio, S. Jin, and A.M. Rao: Novel electrical switching behavior and logic in carbon nanotube Y-junctions. Nat. Mater. 4, 663 (2005).

    Article  CAS  Google Scholar 

  5. A.C. Dillon, K.M. Jones, K.K. Bekkedahl, C.H. Kiang, D.S. Bethune, and M.J. Heben: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).

    Article  CAS  Google Scholar 

  6. S. Ihara and S. Itoh: Helically coiled cage forms of graphitic carbon. Phys. Rev. B 48, 5643 (1993).

    Article  CAS  Google Scholar 

  7. M. Terrones, W.K. Hsu, J.P. Hare, H.W. Kroto, H. Terrones, and D.R.M Walton: Graphitic structures: From planar to spheres, toroids and helices. Philos. Trans. R. Soc. London, Ser. A 354, 2025 (1996).

    Article  CAS  Google Scholar 

  8. S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov, and J.B. Nagy: A formation mechanism for catalytically grown helix-shaped graphite nantubes. Science 265, 635 (1994).

    Article  CAS  Google Scholar 

  9. S. Motojima, M. Kawaguchi, K. Nozaki, and H. Iwanaga: Preparation of coiled carbon fibers by catalytic pyrolysis of acetylene, and its morphology and extension characteristics. Carbon 29, 379 (1991).

    Article  CAS  Google Scholar 

  10. T. Hayashida, L.J. Pan, and Y. Nakayama: Mechanical and electrical properties of carbon tubule nanocoils. Physica B 323, 352 (2002).

    Article  CAS  Google Scholar 

  11. M.M.J Treacy, T.W. Ebbesen, and J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).

    Article  CAS  Google Scholar 

  12. S. Hokushin, L.J. Pan, Y. Konishi, H. Tanaka, and Y. Nakayama: Field-emission properties and structural changes of a stand-alone carbon nanocoil. Jpn. J. Appl. Phys. 46, 565 (2007).

    Article  Google Scholar 

  13. N.J. Tang, Y. Yang, K. Lin, W. Zhong, A. Chaktong, and Y.W. Du: Synthesis of plait-like carbon nanocoils in ultrahigh yield, and their microwave absorption properties. J. Phys. Chem. C 112, 10061 (2008).

    Article  CAS  Google Scholar 

  14. N. Okazaki, S. Hosokawa, T. Goto, and Y. Nakayama: Synthesis of carbon tubule nanocoils using Fe–In–Sn–O fine particles as catalysts. J. Phys. Chem. B 109, 17366 (2005).

    Article  CAS  Google Scholar 

  15. M. Lu, H.L. Li, and K.T.J Lau: Formation and growth mechanism of dissimilar coiled carbon nanotubes by reduced-pressure catalytic chemical vapor deposition. Phys. Chem. B 108, 6186 (2004).

    Article  CAS  Google Scholar 

  16. M.J. Hanus and A.T. Harris: Synthesis of twisted carbon fibers comprised of four intertwined helical strands. Carbon 48, 2989 (2010).

    Article  CAS  Google Scholar 

  17. H.S. Chiu, P.I. Lin, H.C. Wu, W.H. Hsieh, C.D. Chen, and Y.T. Chen: Electron hopping conduction in highly disordered carbon coils. Carbon 47, 1761 (2009).

    Article  CAS  Google Scholar 

  18. L.J. Pan, M. Zhang, and Y. Nakayama: Growth mechanism of carbon nanocoils. J. Appl. Phys. 91, 10058 (2002).

    Article  CAS  Google Scholar 

  19. L.J. Pan, M. Zhang, A. Harada, Y. Takano, and Y. Nakayama: Synthesis of carbon nanocoils using electroplated iron catalyst. AIP Conf. Proc. 590, 19 (2001).

    Article  CAS  Google Scholar 

  20. L.Y. Yu, Y. Qin, and Z.L. Cui: Synthesis of coiled carbon nanofibers by Cu–Ni alloy nanoparticles catalyzed decomposition of acetylene at the low temperature of 241 °C. Mater. Lett. 59, 459 (2005).

    Article  CAS  Google Scholar 

  21. N.J. Tang, W. Zhong, C. Au, A. Gedanken, Y. Yang, and Y.W. Du: Large-scale synthesis, annealing, purification, and magnetic properties of helical carbon nanotubes with symmetrical structures. Adv. Funct. Mater. 17, 1542 (2007).

    Article  CAS  Google Scholar 

  22. R. Haubner, W. Schwinger, J. Haring, and R. Schöftner: Sol–gel preparation of catalyst particles on substrates for hot-filament CVD nanotube deposition. Diamond Relat. Mater. 17, 1452 (2008).

    Article  CAS  Google Scholar 

  23. D.W. Li, L.J. Pan, J.J. Qian, and D.P. Liu: Highly efficient synthesis of carbon nanocoils by catalyst particles prepared by a sol-gel method. Carbon 48, 170 (2010).

    Article  CAS  Google Scholar 

  24. N.J. Tang, J.F. Wen, Y. Zhang, F.X. Liu, K.J. Lin, and Y.W. Du: Helical carbon nanotubes: Catalytic particle size-dependent growth and magnetic properties. ACS Nano 4, 241 (2010).

    Article  CAS  Google Scholar 

  25. D.W. Li, L.J. Pan, D.P. Liu, and N.S. Yu: Relationship between geometric structures of catalyst particles and growth of carbon nanocoils. Chem. Vap. Deposition 16, 166 (2010).

    Article  CAS  Google Scholar 

  26. Y. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, and H.J. Dai: Growth of single walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 105, 11424 (2001).

    Article  CAS  Google Scholar 

  27. G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, and W. Hoenlein: Growth of isolated carbon nanotubes with lithographically defined diameter and location. Nano Lett. 3, 257 (2003).

    Article  CAS  Google Scholar 

  28. D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, and S. Iijima: Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis. Phys. Rev. Lett. 95, 056104 (2005).

    Article  Google Scholar 

  29. D.H. Lee, W.J. Lee, and S.O. Kim: Vertical single-walled carbon nanotube arrays via block copolymer lithography. Chem. Mater. 21, 1368 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 51072027), the Fundamental Research Funds for the Central Universities (No. DUT11ZD102), and the Project for Scientific Researches of 2009 in Universities from the Education Department of Liaoning Province (No. 2009S016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Pan, L. Growth of carbon nanocoils using Fe–Sn–O catalyst film prepared by a spin-coating method. Journal of Materials Research 26, 2024–2032 (2011). https://doi.org/10.1557/jmr.2011.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.227

Navigation