Skip to main content
Log in

The effect of boron on the refinement of microstructure in cast cobalt alloys

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Controlling the grain size and morphology of cast cobalt-based components is important for optimizing a component’s in-service properties. This work investigates the role of boron on the grain size of binary cobalt–boron alloys by application of contemporary grain refinement theory. Boron solute is found to refine the width of the columnar grains but fails to promote the columnar to equiaxed transition. The lack of equiaxed grains is attributed to the thermal solidification conditions and a lack of potent nucleant particles. The refinement of the columnar grains with boron solute may be due to a growth restriction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.M. Beltran: Cobalt-base alloys, in Superalloys II, edited by C.T. Sims, N.S. Stoloff, and W.C. Hagel (Wiley, New York, 1987), p. 135.

    Google Scholar 

  2. P.C Noble: Special materials for the replacement of human joints. Met. Forum 6, 59 (1983).

    CAS  Google Scholar 

  3. A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palumbo: High strength nanocrystalline cobalt with high tensile ductility. Scr. Mater. 49, 651 (2003).

    Article  CAS  Google Scholar 

  4. A.A. Karimpoor, K.T. Aust, and U. Erb: Charpy impact energy of nanocrystalline and polycrystalline cobalt. Scr. Mater. 56, 201 (2007).

    Article  CAS  Google Scholar 

  5. A.A. Karimpoor and U. Erb: Mechanical properties of nanocrystalline cobalt. Phys. Status Solidi A 203, 1265 (2006).

    Article  CAS  Google Scholar 

  6. L. Wang, Y. Gao, T. Xu, and Q. Xue: A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Mater. Chem. Phys. 99, 96 (2006).

    Article  CAS  Google Scholar 

  7. P. Huang and H.F. Lopez: Strain induced ε-martensite in a Co-Cr-Mo alloy: Grain size effects. Mater. Lett. 39, 244 (1999).

    Article  CAS  Google Scholar 

  8. A.G. Della Valle, B. Becksac, J. Anderson, T. Wright, B. Nestor, P.M. Pellicci, and E.A. Salvati: Late fatigue fracture of a modern cemented forged cobalt chrome stem for total hip arthroplasty—A report of 10 cases. J. Arthroplasty 20, 1084 (2005).

    Article  Google Scholar 

  9. P. Huang and H.F. Lopez: Athermal ε-martensite in a Co-Cr-Mo alloy: Grain size effects. Mater. Lett. 39, 249 (1999).

    Article  CAS  Google Scholar 

  10. W.R. Freeman: Investment casting, in Superalloys II, edited by C.T. Sims, N.S. Stoloff, and W.C. Hagel (Wiley, New York, 1987), p. 411.

    Google Scholar 

  11. R.C. Reed: The Superalloys Fundamentals and Applications (Cambridge University Press, New York, 2006), p. 372.

    Book  Google Scholar 

  12. M. Xiaoping, L. Yingju, and Y. Yuansheng: Grain refinement effect of a pulsed magnetic field on as-cast superalloy K417. J. Mater. Res. 24, 2670 (2009).

    Article  Google Scholar 

  13. T. Watmough: Mold treatment to grain refine investment cast cobalt-chromium alloys. Trans. Am. Foundrymen’s Soc. 8, 481 (1980).

    Google Scholar 

  14. W. Jin, F. Bai, T. Li, and G. Yin: Grain refinement of superalloy IN100 under the action of rotary magnetic fields and inoculants. Mater. Lett. 62, 1585 (2008).

    Article  CAS  Google Scholar 

  15. F. Liu, X.F. Guo, and G.C. Yang: Structural stability and non-catalytic nucleation inhibition effect of Si-Zr-B mold coating on superalloy melt. Mater. Sci. Technol. 17, 1102 (2001).

    Article  CAS  Google Scholar 

  16. F. Liu and G.C. Yang: Rapid solidification of highly undercooled bulk liquid superalloy: Recent developments, future directions. Int. Mater. Rev. 51, 145 (2006).

    Article  CAS  Google Scholar 

  17. D.H. StJohn, M.A. Qian, M.A. Easton, P. Cao, and Z. Hildebrand: Grain refinement of magnesium alloys. Metall. Mater. Trans. A 36, 1669 (2005).

    Article  Google Scholar 

  18. M.A. Easton and D.H. StJohn: An analysis of the relationship between grain size, solute content, and the potency and number density of nucleant particles. Metall. Mater. Trans. A 36, 1911 (2005).

    Article  Google Scholar 

  19. M.J. Bermingham, S.D. McDonald, D.H. StJohn and M.S. Dargusch: Latest developments in understanding grain refinement of cast titanium. Mater. Sci. Forum 618-619, 315 (2009).

    Article  Google Scholar 

  20. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B. Acta Mater. 48, 2823 (2000).

    Article  CAS  Google Scholar 

  21. M.S. Dargusch, M.J. Bermingham, S.D. McDonald, and D.H. StJohn: Effects of boron on microstructure in cast zirconium alloys. J. Mater. Res. 25, 1695 (2010).

    Article  CAS  Google Scholar 

  22. I. Maxwell and A. Hellawell: A simple model for grain refinement during solidification. Acta Mater. 23, 229 (1975).

    Article  CAS  Google Scholar 

  23. M.A. Easton and D.H. StJohn: Grain refinement of aluminium alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm. Metall. Mater. Trans. A 30A, 1625 (1999).

    Article  CAS  Google Scholar 

  24. Alloy phase diagrams, in ASM Handbook, Vol. 3 (ASM International, Materials Park, OH, 1990).

  25. A.L. Greer, P.S. Cooper, M.W. Meredith, W. Schnider, P. Schumacher, J.A. Spittle, and A. Tronche: Grain refinement of aluminium alloys by inoculation. Adv. Eng. Mater. 5, 81 (2003).

    Article  CAS  Google Scholar 

  26. M.J. Bermingham, S.D. McDonald, D.H. StJohn, and M.S. Dargusch: Beryllium as a grain refiner in titanium. J. Alloy. Comp. 481, L20 (2009).

    Article  CAS  Google Scholar 

  27. J.D. Hunt: Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. 65, 75 (1984).

    Article  CAS  Google Scholar 

  28. K. Drewes, K. Schaefers, M. Rosner-Kuhn, and M.G. Frohberg: Measurements of dendritic growth and recalescence rates in undercooled melts of cobalt. Mater. Sci. Eng. A 241, 99 (1997).

    Article  Google Scholar 

  29. R. Genders: The interpretation of the macrostructure of cast metals. J. Inst. Met. 35, 259 (1926).

    Google Scholar 

  30. B. Charlmers: Structure of ingots. J. Aust. Inst. Met. 8, 255 (1963).

    Google Scholar 

  31. K.A. Jackson, J.D. Hunt, D.R. Uhlmann, and T.P. Seward III: On origin of equiaxed zone in castings. Trans. Metall. Soc. AIME 236, 149 (1966).

    CAS  Google Scholar 

  32. A. Ohno, T. Motegi, and H. Soda: Origin of the equiaxed crystals in castings. Trans. Iron Steel Inst. Jpn. 11, 18 (1971).

    Article  CAS  Google Scholar 

  33. J. Hutt and D.H. StJohn: The origins of the equiaxed zone—Review of theoretical and experimental work. Int. J. Cast Met. Res. 11, 13 (1998).

    Article  CAS  Google Scholar 

  34. L.Z. Zhuang and E.W. Langer: Effects of cooling rate control during the solidification process on the microstructure and mechanical properties of cast Co-Cr-Mo alloy used for surgical implants. J. Mater. Sci. 24, 381 (1989).

    Article  CAS  Google Scholar 

  35. M. Riddihough: Properties of cobalt-base investment-cast alloys. Foundry Trade J. 5, 421 (1959).

    Google Scholar 

  36. M. Gomez, H. Mancha, A. Salinas, J.L. Rodriguez, J. Escobedo, M. Castro, and M. Mendez: Relationship between microstructure and ductility of investment cast ASTM F-75 implant alloy. J. Biomed. Mater. Res. 34, 157 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Defence Materials Technology Centre (DMTC), the CAST Cooperative Research Centre, and the Queensland Centre of Advanced Materials Processing and Manufacturing (AMPAM) for financial support and permission to publish this work. The DMTC was established and is supported under the Australian Government’s Defence Future Capability Technology Centres Programme. The CAST Cooperative Research Centre was established and is supported under the Australian Government’s Cooperative Research Centres Programme. AMPAM was established and is supported by the Queensland Government’s Smart State Innovation Building Fund. The authors also thank Mr. Oliver Thomas for his assistance during experimentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bermingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermingham, M.J., McDonald, S.D., StJohn, D.H. et al. The effect of boron on the refinement of microstructure in cast cobalt alloys. Journal of Materials Research 26, 951–956 (2011). https://doi.org/10.1557/jmr.2011.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.21

Navigation