Skip to main content
Log in

Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review

  • Invited Feature Paper
  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 August 2011

This article has been updated

Abstract

Device and sensor miniaturization has enabled extraordinary functionality and sensitivity enhancements over the last decades while considerably reducing fabrication costs and energy consumption. The traditional materials and process technologies used today will, however, ultimately run into fundamental limitations. Combining large-scale directed assembly methods with high-symmetry low-dimensional carbon nanomaterials is expected to contribute toward overcoming shortcomings of traditional process technologies and pave the way for commercially viable device nanofabrication. The purpose of this article is to review the guided dielectrophoretic integration of individual single-walled carbon nanotube (SWNT)- and graphene-based devices and sensors targeting continuous miniaturization. The review begins by introducing the electrokinetic framework of the dielectrophoretic deposition process, then discusses the importance of high-quality solutions, followed by the site- and type-selective integration of SWNTs and graphene with emphasis on experimental methods, and concludes with an overview of dielectrophoretically assembled devices and sensors to date. The field of dielectrophoretic device integration is filled with opportunities to research emerging materials, bottom–up integration processes, and promising applications. The ultimate goal is to fabricate ultra-small functional devices at high throughput and low costs, which require only minute operation power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

Change history

References

  1. H.G. Craighead: Nanoelectromechanical systems. Science 290, 1532 (2000).

    Article  CAS  Google Scholar 

  2. M.L. Roukes: Nanoelectromechanical systems for the future. Phys. World 14, 25 (2001).

    Article  CAS  Google Scholar 

  3. H.A. Pohl: The motion and precipitation of suspensoids in divergent electric fields. J. Appl. Phys. 22, 869 (1951).

    Article  CAS  Google Scholar 

  4. H.A. Pohl: Dielectrophoresis (Cambridge Univ. Press, Cambridge, England, 1978).

    Google Scholar 

  5. T.B. Jones: Electromechanics of Particles (Cambridge Univ. Press, Cambridge, England, 1995).

    Book  Google Scholar 

  6. H. Morgan and N.G. Green: AC Electrokinetics: Colloids and Nanoparticles (Research Studies Press Ltd., Hertfordshire, England, 2003).

    Google Scholar 

  7. S. Iijima and T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).

    Article  CAS  Google Scholar 

  8. D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993).

    Article  CAS  Google Scholar 

  9. R. Saito, G. Dresselhaus, and M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London, England, 1998).

    Book  Google Scholar 

  10. A. Jorio, G. Dresselhaus, and M.S. Dresselhaus: Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications (Springer, Berlin, Germany, 2008).

    Book  Google Scholar 

  11. S. Reich, C. Thomsen, and J. Maultzsch: Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, Weinheim, Germany, 2004).

    Google Scholar 

  12. M.J. O’Connell, Ed.: Carbon Nanotubes: Properties and Applications (Taylor & Francis, Boca Raton, FL, 2006).

    Book  Google Scholar 

  13. C. Dekker: Carbon nanotubes as molecular quantum wires. Phys. Today 52, 22 (1999).

    Article  CAS  Google Scholar 

  14. P.L. McEuen: Single-wall carbon nanotubes. Phys. World 13, 31 (2000).

    Article  CAS  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  16. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  17. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim: The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  18. A.K. Geim: Graphene: Status and prospects. Science 324, 1530 (2009).

    Article  CAS  Google Scholar 

  19. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  20. S. Park and R.S. Ruoff: Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217 (2009).

    Article  CAS  Google Scholar 

  21. B.R. Burg, V. Bianco, J. Schneider, and D. Poulikakos: Electrokinetic framework of dielectrophoretic deposition devices. J. Appl. Phys. 107, 124308 (2010).

    Article  CAS  Google Scholar 

  22. H.A. Pohl and I. Hawk: Separation of living and dead cells by dielectrophoresis. Science 152, 647 (1966).

    Article  CAS  Google Scholar 

  23. M. Washizu and O. Kurosawa: Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans. Ind. Appl. 26, 1165 (1990).

    Article  CAS  Google Scholar 

  24. P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, and T.E. Mallouk: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000).

    Article  CAS  Google Scholar 

  25. K. Yamamoto, S. Akita, and Y. Nakayama: Orientation of carbon nanotubes using electrophoresis. Jpn. J. Appl. Phys. 35, 917 (1996).

    Article  Google Scholar 

  26. X.Q. Chen, T. Saito, H. Yamada, and K. Matsushige: Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78, 3714 (2001).

    Article  CAS  Google Scholar 

  27. A. Ramos, H. Morgan, N.G. Green, and A. Castellanos: AC electrokinetics: A review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338 (1998).

    Article  CAS  Google Scholar 

  28. M. Dimaki and P. Bøggild: Dielectrophoresis of carbon nanotubes using microelectrodes: A numerical study. Nanotechnology 15, 1095 (2004).

    Article  CAS  Google Scholar 

  29. Y. Lin, J. Shiomi, S. Maruyama, and G. Amberg: Electrothermal flow in dielectrophoresis of single-walled carbon nanotubes. Phys. Rev. B 76, 045419 (2007).

    Article  CAS  Google Scholar 

  30. Y. Lin, J. Shiomi, and G. Amberg: Numerical calculation of the dielectrophoretic force on a slender body. Electrophoresis 30, 831 (2009).

    Article  CAS  Google Scholar 

  31. M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley: Band gap fluorescence from individual single-walled carbon nanotubes. Science 297, 593 (2002).

    Article  Google Scholar 

  32. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman: Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298, 2361 (2002).

    Article  CAS  Google Scholar 

  33. M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, and A.G. Yodh: High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett. 3, 269 (2003).

    Article  CAS  Google Scholar 

  34. V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, and R.E. Smalley: Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett. 3, 1379 (2003).

    Article  CAS  Google Scholar 

  35. M.S. Arnold, A.A. Green, J.F. Hulvat, S.I. Stupp, and M.C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1, 60 (2006).

    Article  CAS  Google Scholar 

  36. J.N. Coleman: Liquid-phase exfoliation of nanotubes and graphene. Adv. Funct. Mater. 19, 3680 (2009).

    Article  CAS  Google Scholar 

  37. M.C. Hersam: Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3, 387 (2008).

    Article  CAS  Google Scholar 

  38. C.W. Zhou, J. Kong, and H. Dai: Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters. Appl. Phys. Lett. 76, 1597 (2000).

    Article  CAS  Google Scholar 

  39. W. Kim, A. Javey, R. Tu, J. Cao, Q. Wang, and H. Dai: Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 87, 173101 (2005).

    Article  CAS  Google Scholar 

  40. Z.H. Chen, J. Appenzeller, J. Knoch, Y.M. Lin, and P. Avouris: The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. Nano Lett. 5, 1497 (2005).

    Article  CAS  Google Scholar 

  41. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, and H. Dai: Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395, 878 (1998).

    Article  CAS  Google Scholar 

  42. Y. Kobayashi, H. Nakashima, D. Takagi, and Y. Homma: CVD growth of single-walled carbon nanotubes using size-controlled nanoparticle catalyst. Thin Films 464–, 286 (2004).

    Article  CAS  Google Scholar 

  43. A.G. Nasibulin, P.V. Pikhitsa, H. Jiang, and E.I. Kauppinen: Correlation between catalyst particle and single-walled carbon nanotube diameters. Carbon 43, 2251 (2005).

    Article  CAS  Google Scholar 

  44. L. Durrer, J. Greenwald, T. Helbling, M. Muoth, R. Riek, and C. Hierold: Narrowing SWNT diameter distribution using size-separated ferritin-based Fe catalysts. Nanotechnology 20, 355601 (2009).

    Article  CAS  Google Scholar 

  45. F. Hennrich, R. Krupke, K. Arnold, J.A. Rojas Stütz, S. Lebedkin, T. Koch, T. Schimmel, and M.M. Kappes: The mechanism of cavitation-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B 111, 1932 (2007).

    Article  CAS  Google Scholar 

  46. B.R. Burg, J. Schneider, M. Muoth, L. Durrer, T. Helbling, N.C. Schirmer, T. Schwamb, C. Hierold, and D. Poulikakos: Aqueous dispersion and dielectrophoretic assembly of individual surface-synthesized single-walled carbon nanotubes. Langmuir 25, 7778 (2009).

    Article  CAS  Google Scholar 

  47. W.S. Hummers Jr. and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  48. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  49. D. Li, M.B. Müller, S. Gilje, R.B. Kaner, and G.G. Wallace: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).

    Article  CAS  Google Scholar 

  50. Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman: High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563 (2008).

    Article  CAS  Google Scholar 

  51. M. Lotya, Y. Hernandez, P.J. King, R.J. Smith, V. Nicolosi, L.S. Karlsson, F.M. Blighe, S. De, Z. Wang, I.T. McGovern, G.S. Duesberg, and J.N. Coleman: Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 131, 3611 (2009).

    Article  CAS  Google Scholar 

  52. A.A. Green and M.C. Hersam: Emerging methods for producing monodisperse graphene dispersions. J. Phys. Chem. Lett. 1, 544 (2010).

    Article  CAS  Google Scholar 

  53. R. Krupke, F. Hennrich, H.B. Weber, M.M. Kappes, and H.v. Loehneysen: Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using ac-dielectrophoresis. Nano Lett. 3, 1019 (2003).

    Article  CAS  Google Scholar 

  54. T. Helbling, C. Hierold, C. Roman, L. Durrer, M. Mattmann, and V.M. Bright: Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al2O3 for sensor applications. Nanotechnology 20, 434010 (2009).

    Article  CAS  Google Scholar 

  55. T. Schwamb, T.-Y. Choi, N. Schirmer, N.R. Bieri, B. Burg, J. Tharian, U. Sennhauser, and D. Poulikakos: A dielectrophoretic method for high yield deposition of suspended, individual carbon nanotubes with four-point electrode contact. Nano Lett. 7, 3633 (2007).

    Article  CAS  Google Scholar 

  56. T. Schwamb, B.R. Burg, N.C. Schirmer, and D. Poulikakos: An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704 (2009).

    Article  CAS  Google Scholar 

  57. A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke: Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano Lett. 7, 1556 (2007).

    Article  CAS  Google Scholar 

  58. B.R. Burg, F. Lütolf, J. Schneider, N.C. Schirmer, T. Schwamb, and D. Poulikakos: High-yield dielectrophoretic assembly of two-dimensional graphene nanostructures. Appl. Phys. Lett. 94, 053110 (2009).

    Article  CAS  Google Scholar 

  59. P. Stokes and S.I. Khondaker: High quality solution processed carbon nanotube transistors assembled by dielectrophoresis. Appl. Phys. Lett. 96, 083110 (2010).

    Article  CAS  Google Scholar 

  60. P. Stokes and S.I. Khondaker: Evaluating defects in solution-processed carbon nanotube devices via low-temperature transport spectroscopy. ACS Nano 4, 2659 (2010).

    Article  CAS  Google Scholar 

  61. R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus: Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204 (1992).

    Article  CAS  Google Scholar 

  62. R. Krupke, F. Hennrich, H.v. Loehneysen, and M.M. Kappes: Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301, 344 (2003).

    Article  CAS  Google Scholar 

  63. R. Krupke, F. Hennrich, M.M. Kappes, and H.v. Löhneysen: Surface conductance induced dielectrophoresis of semiconducting single-walled carbon nanotubes. Nano Lett. 4, 1395 (2004).

    Article  CAS  Google Scholar 

  64. R. Krupke, S. Linden, M. Rapp, and F. Hennrich: Thin films of metallic carbon nanotubes prepared by dielectrophoresis. Adv. Mater. 18, 1468 (2006).

    Article  CAS  Google Scholar 

  65. Y. Kim, S. Hong, S. Jung, M.S. Strano, J. Choi, and S. Baik: Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants. J. Phys. Chem. B 110, 1541 (2006).

    Article  CAS  Google Scholar 

  66. S. Hong, S. Jung, J. Choi, Y. Kim, and S. Baik: Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes. Langmuir 23, 4749 (2007).

    Article  CAS  Google Scholar 

  67. J. Kang, S. Hong, Y. Kim, and S. Baik: Controlling the carbon nanotube-to-medium conductivity ratio for dielectrophoretic separation. Langmuir 25, 12471 (2009).

    Article  CAS  Google Scholar 

  68. B.R. Burg, J. Schneider, V. Bianco, N.C. Schirmer, and D. Poulikakos: Selective parallel integration of individual metallic single-walled carbon nanotubes from heterogeneous solutions. Langmuir 26, 10419 (2010).

    Article  CAS  Google Scholar 

  69. A. Vijayaraghavan, F. Hennrich, N. Stuerzl, M. Engel, M. Ganzhorn, M. Oron-Carl, C.W. Marquardt, S. Dehm, S. Lebedkin, M.M. Kappes, and R. Krupke: Toward single-chirality carbon nanotube device arrays. ACS Nano 4, 2748 (2010).

    Article  CAS  Google Scholar 

  70. S. Hong, S. Jung, S. Kang, Y. Kim, X. Chen, S. Stankovich, R.S. Ruoff, and S. Baik: Dielectrophoretic deposition of graphite oxide soot particles. J. Nanosci. Nanotechnol. 8, 424 (2008).

    Article  CAS  Google Scholar 

  71. X. Wu, M. Sprinkle, L. Xuebin, F. Ming, C. Berger, and W.A. de Heer: Epitaxial-graphene/graphene-oxide junction: An essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801 (2008).

    Article  CAS  Google Scholar 

  72. H. Kang, A. Kulkarni, S. Stankovich, R.S. Ruoff, and S. Baik: Restoring electrical conductivity of dielectrophoretically assembled graphite oxide sheets by thermal and chemical reduction techniques. Carbon 47, 1520 (2009).

    Article  CAS  Google Scholar 

  73. B.R. Burg, J. Schneider, S. Maurer, N.C. Schirmer, and D. Poulikakos: Dielectrophoretic integration of single- and few-layer graphenes. J. Appl. Phys. 107, 034302 (2010).

    Article  CAS  Google Scholar 

  74. A. Vijayaraghavan, C. Sciascia, S. Dehm, A. Lombardo, A. Bonetti, A.C. Ferrari, and R. Krupke: Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. ACS Nano 3, 1729 (2009).

    Article  CAS  Google Scholar 

  75. C.-L. Chen, V. Agarwal, S. Sonkusale, and M.R. Dokmeci: The heterogeneous integration of single-walled carbon nanotubes onto complementary metal oxide semiconductor circuitry for sensing applications. Nanotechnology 20, 225302 (2009).

    Article  CAS  Google Scholar 

  76. D. Joung, A. Chunder, L. Zhai, and S.I. Khondaker: High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis. Nanotechnology 21, 165202 (2010).

    Article  CAS  Google Scholar 

  77. M. Ganzhorn, A. Vijayaraghavan, S. Dehm, F. Hennrich, A.A. Green, M. Fichtner, A. Voigt, M. Rapp, H.v. Loehneysen, M.C. Hersam, M.M. Kappes, and R. Krupke: Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes. ACS Nano 5, 1670 (2011).

    Article  CAS  Google Scholar 

  78. C.-L. Chen, C.-F. Yang, V. Agarwal, T. Kim, S. Sonkusale, A. Busnaina, M. Chen, and M.R. Dokmeci: DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry. Nanotechnology 21, 095504 (2010).

    Article  CAS  Google Scholar 

  79. T.W. Tombler, C.W. Zhou, L. Alexseyev, J. Kong, H.J. Dai, L. Lei, C.S. Jayanthi, M.J. Tang, and S.Y. Wu: Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 405, 769 (2000).

    Article  CAS  Google Scholar 

  80. E.D. Minot, Y. Yaish, V. Sazonova, J.-Y. Park, M. Brink, and P.L. McEuen: Tuning carbon nanotube band gaps with strain. Phys. Rev. Lett. 90, 156401 (2003).

    Article  CAS  Google Scholar 

  81. R.J. Grow, Q. Wang, J. Cao, D.W. Wang, and H.J. Dai: Piezoresistance of carbon nanotubes on deformable thin-film membranes. Appl. Phys. Lett. 86, 093104 (2005).

    Article  CAS  Google Scholar 

  82. C. Stampfer, T. Helbling, D. Obergfell, B. Schoberle, M.K. Tripp, A. Jungen, S. Roth, V.M. Bright, and C. Hierold: Fabrication of single-walled carbon-nanotube-based pressure sensors. Nano Lett. 6, 233 (2006).

    Article  CAS  Google Scholar 

  83. T. Helbling, C. Roman, and C. Hierold: Signal-to-noise ratio in carbon nanotube electromechanical piezoresistive sensors. Nano Lett. 10, 3350 (2010).

    Article  CAS  Google Scholar 

  84. B.R. Burg, T. Helbling, C. Hierold, and D. Poulikakos: Piezoresistive pressure sensors with parallel integration of individual single-walled carbon nanotubes. J. Appl. Phys. 109, 064310 (2011).

    Article  CAS  Google Scholar 

  85. C.W. Marquardt, S. Grunder, A. Błaszczyk, S. Dehm, F. Hennrich, H.v. Löhneysen, M. Mayor, and R. Krupke: Electroluminescence from a single nanotube-molecule-nanotube junction. Nat. Nanotechnol. 5, 863 (2010).

    Article  CAS  Google Scholar 

  86. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Carbon nanotubes: The route toward applications. Science 297, 787 (2002).

    Article  CAS  Google Scholar 

  87. W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet: Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114 (2010).

    Article  CAS  Google Scholar 

  88. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Junichiro Shiomi for commenting on the manuscript. This work was supported by the ETH research commission (Grant No. TH-13/05-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Burg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burg, B.R., Poulikakos, D. Large-scale integration of single-walled carbon nanotubes and graphene into sensors and devices using dielectrophoresis: A review. Journal of Materials Research 26, 1561–1571 (2011). https://doi.org/10.1557/jmr.2011.186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.186

Navigation