Skip to main content
Log in

Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi,Sb)2Te3 thermoelectric materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A combined melt-spinning and spark-plasma-sintering (SPS) procedure has proven to be effective in preparing high-performance (Bi,Sb)2Te3 thermoelectric (TE) nanocomposites via creating and optimizing their resulting multiscale microstructures. (Bi,Sb)2Te3 possesses a highly anisotropic crystal structure; therefore, it is important to investigate any potential correlation between the SPS conditions, the as-formed microstructures, and the resulting TE properties. In this work, we investigate the correlation between the SPS pressure, the microstructure texture, and the anisotropy of the total thermal conductivity in these melt-spun spark-plasma-sintered (Bi,Sb)2Te3 compounds. The thermal conductivity has been measured in directions that are both perpendicular and parallel to the pressing (or force) direction by rearranging the sample geometry as described in the text. The results show that the anisotropy of thermal conductivity is ∼0, 2–3, 6–7, and 13–15% for the samples sintered at pressures of 20, 30, 45, and 60 MPa, respectively. These results are consistent with an increasing degree of orientation observed by x-ray diffraction and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.

Similar content being viewed by others

REFERENCES

  1. H.J. Goldsmid and R.W. Douglas: The use of semiconductors in thermoelectric refrigeration. Br. J. Appl. Phys. 5, 386 (1954).

    Article  Google Scholar 

  2. L.E. Bell: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  3. W.R. Bekebrede and O.J. Guentert: Lattice parameters in the system antimony telluride bismuth telluride. J. Phys. Chem. Solids 23, 1023 (1962).

    Article  CAS  Google Scholar 

  4. D.L. Greenaway and G. Harbeke: Band structure of bismuth telluride, bismuth selenide and their respective alloys. J. Phys. Chem. Solids 26, 1585 (1965).

    Article  CAS  Google Scholar 

  5. J.R. Drabble and C.H.L. Goodman: Chemical bonding in bismuth telluride. J. Phys. Chem. Solids 5, 142 (1958).

    Article  CAS  Google Scholar 

  6. R.T. Delves, A.E. Bowley, D.W. Hazelden, and H.J. Goldsmid: Anisotropy of the electrical conductivity in bismuth telluride. Proc. Phys. Soc. 78, 838 (1961).

    Article  CAS  Google Scholar 

  7. L.R. Testardi, J.N. Bierly Jr., and F.J. Donahoe: Transport properties of p-type Bi2Te3—Sb2Te3 alloys in the temperature range 80–370°K. J. Phys. Chem. Solids 23, 1209 (1962).

    Article  CAS  Google Scholar 

  8. I.J. Ohsugi, T. Kojima, M. Sakata, M. Yamanashi, and I.A. Nishida: Evaluation of anisotropic thermoelectricity of sintered Bi2Te3 on the basis of the orientation distribution of crystallites. J. Appl. Phys. 76, 2235 (1994).

    Article  CAS  Google Scholar 

  9. H. Scherrer and S. Scherrer: Bismuth telluride, antimony telluride, and their solid solutions, in CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press LLC, New York, 1995), p. 229.

    Google Scholar 

  10. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  11. Y. Ma, Q. Hao, B. Poudel, Y.C. Lan, B. Yu, D.Z. Wang, G. Chen, and Z.F. Ren: Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks. Nano Lett. 8, 2580 (2008).

    Article  CAS  Google Scholar 

  12. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang: Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  13. Y.Q. Cao, X.B. Zhao, T.J. Zhu, X.B. Zhang, and J.P. Tu: Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure. Appl. Phys. Lett. 92, 143106 (2008).

    Article  Google Scholar 

  14. X.F. Tang, W.J. Xie, H. Li, W.Y. Zhao, Q.J. Zhang, and M. Niino: Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure. Appl. Phys. Lett. 90, 012102 (2007).

    Article  Google Scholar 

  15. W.J. Xie, X.F. Tang, Q.J. Zhang, and T.M. Tritt: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).

    Article  Google Scholar 

  16. W.J. Xie, X.F. Tang, Q.J. Zhang, and T.M. Tritt: Unique low-dimensional structure and enhanced thermoelectric performance for P-type Bi0.52Sb1.48Te3 bulk material. Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  17. W.J. Xie, J. He, H.J. Kang, X.F. Tang, S. Zhu, M. Laver, S.Y. Wang, J.R.D. Copley, C.M. Brown, Q.J. Zhang, and T.M. Tritt: Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb)2Te3 nanocomposites. Nano Lett. 10, 3283 (2010).

    Article  CAS  Google Scholar 

  18. X.A. Yan, B. Poudel, Y. Ma, W.S. Liu, G. Joshi, H. Wang, Y.C. Lan, D.Z. Wang, G. Chen, and Z.F. Ren: Experimental studies on anisotropic thermoelectric properties and structures of n-Type Bi2Te2.7Se0.3. Nano Lett. 10, 3373 (2010).

    Article  CAS  Google Scholar 

  19. D.H. Kim, C. Kim, S.H. Heo, and H. Kim: Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi-Te-based thermoelectric materials. Acta Mater. 59, 405 (2011).

    Article  CAS  Google Scholar 

  20. A.L. Pope, B. Zawilski, and T.M. Tritt: Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics 41, 725 (2001).

    Article  CAS  Google Scholar 

  21. G.D. Zhan, J. Kuntz, J. Wan, J. Garay, and A.K. Mukherjee: Spark-plasma-sintered BaTiO3/Al2O3 nanocomposites. Mater. Sci. Eng., A 356, 443 (2003).

    Article  Google Scholar 

  22. M. Nygren and Z. Shen: Spark plasma sintering: Possibilities and limitations. Key Eng. Mater. 264, 719 (2004).

    Article  Google Scholar 

  23. M. Omori: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 (2000).

    Article  Google Scholar 

  24. U. Anselmi-Tamburini, J.E. Garay, and Z.A. Munir: Fast low-temperature consolidation of nanometric ceramic materials. Scr. Mater. 54, 823 (2006).

    Article  CAS  Google Scholar 

  25. W. Liu and M. Naka: In situ joining of dissimilar nanocrystalline materials by spark plasma sintering. Scr. Mater. 48, 1225 (2003).

    Article  CAS  Google Scholar 

  26. Y.C. Wang and Z.Y. Fu: Study of temperature field in spark plasma sintering. Mater. Sci. Eng., B 90, 34 (2002).

    Article  Google Scholar 

  27. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van der Biest: Modelling of the temperature distribution during field assisted sintering. Acta Mater. 53, 4379 (2005).

    Article  CAS  Google Scholar 

  28. A. Schmitz, C. Stiewe, and E. Muller: Variations of thermoelectric and mechanical properties of large lead telluride samples produced by a short-term sintering method. J. Electron. Mater. 40, 5, 543–546 (2010).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the support received from the National Basic Research Program of China (Grant No. 2007CB607501) and the Natural Science Foundation of China (Grant Nos. 50731006 and 50672118), along with 111 Project (Grant No. B07040). The work at Clemson University was supported by DOE/EPSCoR Implementation Grant (DE-FG02-04ER-46139) and the SC EPSCoR cost sharing program. W. Xie would also like to thank the China Scholarship Council (CSC) for support in the form of a partial fellowship (No. 2008695022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfeng Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., He, J., Zhu, S. et al. Investigation of the sintering pressure and thermal conductivity anisotropy of melt-spun spark-plasma-sintered (Bi,Sb)2Te3 thermoelectric materials. Journal of Materials Research 26, 1791–1799 (2011). https://doi.org/10.1557/jmr.2011.170

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.170

Navigation