Skip to main content

Advertisement

Log in

Electrospun TiO2 nanowires for hybrid photovoltaic cells

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2011

This article has been updated

Abstract

A simple and controllable fabrication of TiO2 nanowires by electrospinning and their applications to the electron transporting layer for hybrid organic–inorganic photovoltaic cells are reported. TiO2 nanowires were directly electrospun onto an indium tin oxide on glass substrate from a solution in methanol of polyvinylpyrrolidone, titanium(IV) butoxide, and acetylacetone. The nanowire electrode obtained was consequently subjected to calcination at 450 °C. Solution of blended [6,6]-phenyl-C61-butyric acid methyl ester and poly(3-hexylthiophene) was spin coated on the TiO2 nanowire electrode, followed by thermal annealing and deposition of Au electrode. Hybrid organic–inorganic photovoltaic cells made of TiO2 nanowires exhibited remarkable improvement of the cell efficiencies in terms of photocurrent density and open-circuit voltage as compared with those of references, TiO2 flat films. Maximum energy conversion efficiency of hybrid organic–inorganic photovoltaic cells made of TiO2 nanowires of 1.27% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
TABLE II.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

Change history

References

  1. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, and A.J. Heeger: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995).

    Article  CAS  Google Scholar 

  2. S. Chuangchote, P. Ruankham, T. Sagawa, and S. Yoshikawa: Improvement of power conversion efficiency in organic photovoltaics by slow cooling in annealing treatment. Appl. Phys. Express 3, 122302 (2010).

    Article  Google Scholar 

  3. W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger: Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Funct. Mater. 15, 1617 (2005).

    Article  CAS  Google Scholar 

  4. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005).

    Article  CAS  Google Scholar 

  5. M. Reyes-Reyes, K. Kim, and D.L. Carroll: High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends. Appl. Phys. Lett. 87, 083506 (2005).

    Article  Google Scholar 

  6. C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen: Plastic solar cell. Adv. Funct. Mater. 11, 15 (2001).

    Article  CAS  Google Scholar 

  7. W.U. Huynh, J.J. Dittmer, and A.P. Alivisatos: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).

    Article  CAS  Google Scholar 

  8. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley: Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).

    Article  Google Scholar 

  9. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes: High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays. Appl. Phys. Lett. 91, 152111 (2007).

    Article  Google Scholar 

  10. R. Steim, S.A. Choulis, P. Schilinsky, and C.J. Brabec: Interface modification for highly efficient organic photovoltaics. Appl. Phys. Lett. 92, 093303 (2008).

    Article  Google Scholar 

  11. T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng, and Y. Cao: Solution-processed zinc oxide thin film as a buffer layer for polymer solar cells with an inverted device structure. J. Phys. Chem. C 114, 6849 (2010).

    Article  CAS  Google Scholar 

  12. Y.-J. Cheng, C.-H. Hsieh, Y. He, C.-S. Hsu, and Y. Li: Combination of indene-C60 bis-adduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J. Am. Chem. Soc. 132, 17381 (2010).

    Article  CAS  Google Scholar 

  13. S. Chuangchote, J. Jitputti, T. Sagawa, and S. Yoshikawa: Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl. Mater. Interfaces 1, 1140 (2009).

    Article  CAS  Google Scholar 

  14. S. Chuangchote, T. Sagawa, and S. Yoshikawa: Electrospinning of poly(vinyl pyrrolidone): Solvent effects on electrospinnability for fabrication of poly(p-phenylene vinylene) and TiO2 nanofibers. J. Appl. Polym. Sci. 114, 2777 (2009).

    Article  CAS  Google Scholar 

  15. S. Chuangchote, T. Sagawa, and S. Yoshikawa: Efficient dye-sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer. Appl. Phys. Lett. 93, 033310 (2008).

    Article  Google Scholar 

  16. T.J. Savenije, J.M. Warman, and A. Goossens: Visible light sensitisation of titanium dioxide using a phenylene vinylene polymer. Chem. Phys. Lett. 287, 148 (1998).

    Article  CAS  Google Scholar 

  17. A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, and H.-H. Horhold: Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion. Adv. Mater. 12, 1689 (2000).

    Article  CAS  Google Scholar 

  18. S.-S. Kim, J. Jo, C. Chun, J.-C. Hong, and D.-Y. Kim: Hybrid solar cells with ordered TiO2 nanostructures and MEH-PPV. J. Photochem. Photobiol. Chem. 188, 364 (2007).

    Article  CAS  Google Scholar 

  19. Q. Wei, K. Hirota, K. Tajima, and K. Hashimoto: Design and synthesis of TiO2 nanorod assemblies and their application for photovoltaic devices. Chem. Mater. 18, 5080 (2006).

    Article  CAS  Google Scholar 

  20. H.-J. Her, J.-M. Kim, C.J. Kang, and Y.-S. Kim: Hybrid photovoltaic cell with well-ordered nanoporous titania-P3HT by nanoimprinting lithography. J. Phys. Chem. Solids 69, 1301 (2008).

    Article  CAS  Google Scholar 

  21. T. Rattanavoravipa, T. Sagawa, and S. Yoshikawa: Photovoltaic performance of hybrid solar cell with TiO2 nanotubes arrays fabricated through liquid deposition using ZnO template. Sol. Energy Mater. Sol. Cells 92, 1445 (2008).

    Article  CAS  Google Scholar 

  22. P. Ravirajan, D.D.C Bradley, J. Nelson, S.A. Haque, J.R. Durrant, H.J.P Smit, and J.M. Kroon: Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector. Appl. Phys. Lett. 86, 143101 (2005).

    Article  Google Scholar 

  23. T. Kuwabara, H. Sugiyama, T. Yamaguchi, and K. Takahashi: Inverted type bulk-heterojunction organic solar cell using electrodeposited titanium oxide thin films as electron collector electrode. Thin Solid Films 517, 3766 (2009).

    Article  CAS  Google Scholar 

  24. S. Yodyingyong, X. Zhou, Q. Zhang, D. Triampo, J. Xi, K. Park, B. Limketkai, and G. Cao: Enhanced photovoltaic performance of nanostructured hybrid solar cell using highly oriented TiO2 nanotubes. J. Phys. Chem. C 114, 21851 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid from the Japan Society for the Promotion of Science (JSPS) under the JSPS Postdoctoral Fellowship for Foreign Researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Sagawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuangchote, S., Sagawa, T. & Yoshikawa, S. Electrospun TiO2 nanowires for hybrid photovoltaic cells. Journal of Materials Research 26, 2316–2321 (2011). https://doi.org/10.1557/jmr.2011.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.167

Navigation