Skip to main content
Log in

Tensile and compressive behaviors of open-tip carbon nanocones under axial strains

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influences of temperature, cone height, and apex angle on the tensile and compressive behaviors of open-tip carbon nanocones (CNCs) under axial strains were examined. The tensile failure strain and failure load of the CNC were found to decline evidently as the system temperature increases. The average failure strain decreases with the growth in the cone height. Concerning compressive behaviors, the critical strain and critical load of the CNC reduce manifestly with the increase in the system temperature and the apex angle. As the cone height grows, the critical strain decreases evidently but the critical load has no obvious change. The buckling mode does not have much variation when the temperature increases. It displays a more distorted buckling pattern with the growth in the cone height and transfers from an axisymmetric pattern to an unsymmetrical and more warped pattern when the apex angle expands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S. Iijima: Carbon nanotubes: Past, present, and future. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. P.J.F. Harris: Carbon Nanotube Science: Synthesis, Properties and Applications (Cambridge University Press, Cambridge, UK, 2009).

    Book  Google Scholar 

  3. M. Ge and K. Sattler: Observation of fullerene cones. Chem. Phys. Lett. 220, 192 (1994).

    Article  CAS  Google Scholar 

  4. A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdhl, S. Lynum, and T.W. Ebbesen: Graphitic cones and the nucleation of curved carbon surfaces. Nature 388, 451 (1997).

    Article  CAS  Google Scholar 

  5. S.N. Naess, A. Elgsaeter, G. Helgesen, and K.D. Knudsen: Carbon nanocones: wall structure and morphology. Sci. Technol. Adv. Mater. 10, 065002 (2009).

    Article  Google Scholar 

  6. N.A. Kiselev, J. Hammer, and A.S. Kotosonov: Carbon nanotubes from polyethylene precursors: Structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon 36, 1149 (1998).

    Article  CAS  Google Scholar 

  7. H. Terrones, T. Hayashi, M. Muñoz-Navia, M. Terrones, Y.A. Kim, N. Grobert, R. Kamalakaran, J. Dorantes-Davila, R. Escudero, M.S. Dresselhaus, and M. Endo: Graphitic cones in palladium catalysed carbon nanofibers. Chem. Phys. Lett. 343, 241 (2001).

    Article  CAS  Google Scholar 

  8. M. Endo, Y.A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, and M.S. Dresselhaus: Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl. Phys. Lett. 80, 1267 (2002).

    Article  CAS  Google Scholar 

  9. B. Eksioglu and A. Nadarajah: Structural analysis of conical carbon nanofibers. Carbon 44, 360 (2006).

    Article  CAS  Google Scholar 

  10. S. Iijima, M. Yudasaka, R. Yamada, S. Bandow, K. Suenaga, F. Kokai, and K. Taskahashi: Nanoaggregates of single-walled graphitic carbon nanohorns. Chem. Phys. Lett. 309, 165 (1999).

    Article  CAS  Google Scholar 

  11. Y. Gogotsi, S. Dimovski, and J.A. Libera: Conical crystals of graphite. Carbon 40, 2263 (2002).

    Article  CAS  Google Scholar 

  12. G. Zhang, X. Jiang, and E. Wang: Tubular graphite cones. Science 300, 475 (2003).

    Article  Google Scholar 

  13. Z.L. Tsakadze, I. Levchenko, K. Ostrikov, and X. Su: Plasma-assisted self-organized growth of uniform carbon nanocone arrays. Carbon 45, 2022 (2007).

    Article  CAS  Google Scholar 

  14. I. Levchenko, K. Ostrikov, J.D. Long, and S. Xu: Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones. Appl. Phys. Lett. 91, 113115 (2007).

    Article  Google Scholar 

  15. J.Y. Hsieh, C. Chen, J.L. Chen, C.I. Chen, and C.C. Hwang: The nanoindentation of a copper substrate by single-walled carbon nanocone tips: A molecular dynamics study. Nanotechnology 20, 095709 (2009).

    Article  Google Scholar 

  16. I.C. Chen, L.H. Chen, A. Gapin, S. Jin, L. Yuan and S.H. Liou: Iron-platinum-coated carbon nanocone probes on tipless cantilevers for high resolution magnetic force imaging. Nanotechnology 19, 075501 (2008).

    Article  Google Scholar 

  17. S.S. Yu and W.T. Zheng: Effect of N/B doping on the electronic and field emission properties for carbon nanotubes, carbon nanocones, and graphene nanoribbons. Nanoscale 2, 1069 (2010).

    Article  CAS  Google Scholar 

  18. S.P. Jordan and V.H. Crespi: Theory of carbon nanocones: mechanical chiral inversion of a micron-scale three-dimensional object. Phys. Rev. Lett. 93, 255504 (2004).

    Article  Google Scholar 

  19. P.C. Tsai and T.H. Fang: A molecular dynamics study of the nucleation, thermal stability and nanomechanics of carbon nanocones. Nanotechnology 18, 105702 (2007).

    Article  Google Scholar 

  20. K.M. Liew, J.X. Wei, and X.Q. He: Carbon nanocones under compression: Buckling and post-buckling behaviors. Phys. Rev. B 75, 195435 (2007).

    Article  Google Scholar 

  21. J.X. Wei, K.M. Liew, and X.Q. He: Mechanical properties of carbon nanocones. Appl. Phys. Lett. 91, 261906 (2007).

    Article  Google Scholar 

  22. B.I. Yakobson, C.J. Brabec, and J. Bernholc: Nanomechanics of carbon tubes: Instabilities beyond linear response. Phys. Rev. Lett. 76, 2551 (1996).

    Article  Google Scholar 

  23. B.I. Yakobson, M.P. Campbell, C.J. Brabec, and J. Bernholc: High strain rate fracture and C-chain unraveling in carbon nanotubes. Comput. Mater. Sci. 8, 341 (1997).

    Article  CAS  Google Scholar 

  24. J. Tersoff: New empirical model for the structural properties of silicon. Phys. Rev. Lett. 56, 632 (1986).

    Article  CAS  Google Scholar 

  25. J. Tersoff: Modeling solid-state chemistry: Interatomic potentials for multi-component systems. Phys. Rev. B 39, 5566 (1989).

    Article  CAS  Google Scholar 

  26. J.M. Haile: Molecular Dynamics Simulation (Wiley–Interscience, New York, 1992).

    Google Scholar 

  27. D.C. Rapaport: The Art of Molecular Dynamics Simulations (Cambridge University Press, Cambridge, UK, 2004).

    Book  Google Scholar 

  28. D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott: A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support provided to this research by the National Science Council of the Republic of China under Grant No. NSC 97-2623-E006-001-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Hsiang Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, ML., Cheng, CH. & Lin, YP. Tensile and compressive behaviors of open-tip carbon nanocones under axial strains. Journal of Materials Research 26, 1577–1584 (2011). https://doi.org/10.1557/jmr.2011.160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.160

Navigation