Skip to main content
Log in

High-concentration niobium (V) doping into TiO2 nanoparticles synthesized by thermal plasma processing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-concentration niobium (V)-doped titanium dioxide (TiO2) nanoparticles of the nonequilibrium chemical composition have been synthesized via Ar/O2 radio-frequency thermal plasma oxidation of mist precursor solutions with various Nb5+ concentrations (Nb/(Ti + Nb) = 0–25.0 at.%). The solubility as high as ∼25.0 at.% has not been achieved before by wet-chemical techniques. The preferable anatase formation was attained in the plasma-synthesized powders and was enhanced by the niobium doping. All the powders were heated at high temperatures (600–800 °C) to investigate their phase transformation, band gap variation, inter-particulate binding behavior, and photocatalytic stability. The transformation from anatase to rutile was effectively inhibited by increasing the Nb5+ content. The Nb5+ doping prevented the band gap of TiO2 from narrowing after the heating. At high temperatures, Nb5+ doping could not only preserve particle size but also prevent inter-particulate binding. High concentration (25.0 at.%) Nb5+ doping retained the photocatalytic performance almost invariably irrespective of being thermally treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T.N. Obee and R.T. Brown: TiO2 photocatalysis for indoor air applications-effects of humidity and trace contaminant lels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene. Environ. Sci. Technol. 29, 1223 (1995).

    Article  CAS  Google Scholar 

  2. G.K. Mor, O.K. Varghese, M. Paulose, K. Shankar, and C.A. Grimes: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).

    Article  CAS  Google Scholar 

  3. A.M. Ruiz, A. Cornet, K. Shimanoe, J.R. Morante, and N. Yamazoe: Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators, B 108, 34 (2005).

    Article  CAS  Google Scholar 

  4. J.G. Li, X.H. Wang, K. Watanabe, and T. Ishigaki: Phase structure and luminescence properties of Eu3+-doped TiO2 nanocrystals synthesized by Ar/O2 radio frequency thermal plasma oxidation of liquid precursor mists. J. Phys. Chem. B 110, 1121 (2006).

    Article  CAS  Google Scholar 

  5. J.G. Li, R. Buechel, M. Isobe, T. Mori, and T. Ishigaki: Cobalt-doped TiO2 nanocrystallites: Radio-frequency thermal plasma processing, phase structure, and magnetic properties. J. Phys. Chem. C 113, 8009 (2009).

    Article  CAS  Google Scholar 

  6. A.F. Wells: Structural Inorganic Chemistry (Clarendon Press, Oxford, 1975).

    Google Scholar 

  7. T. Fukumura, H. Toyosaki, and Y. Yamada: Magnetic oxide semiconductors. Semicond. Sci. Technol. 20, S103 (2005).

    Article  CAS  Google Scholar 

  8. Y. Hu, H.L. Tsai, and C.L. Huang: Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A-Struct. 344, 209 (2003).

    Article  Google Scholar 

  9. R.D. Shannon and J.A. Pask: Kinetics of anatase-rutile transformation. J. Am. Ceram. Soc. 48, 391 (1965).

    Article  CAS  Google Scholar 

  10. F.C. Gennari and D.M. Pasquevich: Kinetics of the anatase rutile transformation in TiO2 in the presence of Fe2O3. J. Mater. Sci. 33, 1571 (1998).

    Article  CAS  Google Scholar 

  11. T. Watanabe, A. Nakajima, R. Wang, M. Minabe, S. Koizumi, A. Fujishima, and K. Hashimoto: Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films 351, 260 (1999).

    Article  CAS  Google Scholar 

  12. I. Sopyan, S. Murasawa, K. Hashimoto, and A. Fujishima: Highly efficient TiO2 film photocatalyst-degradation of gaseous acetaldehyde. Chem. Lett. 23, 723 (1994).

    Article  Google Scholar 

  13. K. Tanaka, M.F.V. Capule, and T. Hisanaga: Effect of crystallinity of TiO2 on its photocatalytic action. Chem. Phys. Lett. 187, 73 (1991).

    Article  CAS  Google Scholar 

  14. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, and T. Watanabe: Light-induced amphiphilic surfaces. Nature. 388, 431 (1997).

    Article  CAS  Google Scholar 

  15. A.M. Ruiz, G. Dezanneau, J. Arbiol, A. Cornet, and J.R. Morante: Study of the influence of Nb content and sintering temperature on TiO2 sensing films. Thin Solid Films 436, 90 (2003).

    Article  CAS  Google Scholar 

  16. A.M. Ruiz, G. Dezanneau, J. Arbiol, A. Cornet, and J.R. Morante: Insights into the structural and chemical modifications of Nb additive on TiO2 nanoparticles. Chem. Mater. 16, 862 (2004).

    Article  CAS  Google Scholar 

  17. N.L.H. Hoang, N. Yamada, T. Hitosugi, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa: Low-temperature fabrication of transparent conducting anatase Nb-doped TiO2 films by sputtering. Appl. Phys. Express. 1, 115001 (2008).

    Article  CAS  Google Scholar 

  18. N. Yamada, T. Hitosugi, N.L.H. Hoang, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa: Structural, electrical and optical propel-ties of sputter-deposited Nb-doped TiO2 (TNO) polycrystalline films. Thin Solid Films 516, 5754 (2008).

    Article  CAS  Google Scholar 

  19. T. Hitosugi, H. Kamisaka, K. Yamashita, H. Nogawa, Y. Furubayashi, S. Nakao, N. Yamada, A. Chikamatsu, H. Kumigashira, M. Oshima, Y. Hirose, T. Shimada, and T. Hasegawa: Electronic band structure of transparent conductor: Nb-doped anatase TiO2. Appl. Phys. Express. 1, 111203 (2008).

    Article  CAS  Google Scholar 

  20. Y. Hirose, N. Yamada, S. Nakao, T. Hitosugi, T. Shimada, and T. Hasegawa: Large electron mass anisotropy in a d-electron-based transparent conducting oxide: Nb-doped anatase TiO2 epitaxial films. Phys. Rev. B 79, 165108 (2009).

    Article  CAS  Google Scholar 

  21. T. Hitosugi, N. Yamada, N.L.H. Hoang, J. Kasai, S. Nakao, T. Shimada, and T. Hasegawa: Fabrication of TiO2-based transparent conducting oxide on glass and polyimide substrates. Thin Solid Films 517, 3106 (2009).

    Article  CAS  Google Scholar 

  22. E. Traversa, M.L. Di Vona, S. Licoccia, M. Sacerdoti, M.C. Carotta, L. Crema, and G. Martinelli: Sol-gel processed TiO2-based nano-sized powders for use in thick-film gas sensors for atmospheric pollutant monitoring. J. Sol-Gel Sci. Technol. 22, 167 (2001).

    Article  CAS  Google Scholar 

  23. J. Arbiol, J. Cerda, G. Dezanneau, A. Cirera, F. Peiro, A. Cornet, and J.R. Morante: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 92, 853 (2002).

    Article  CAS  Google Scholar 

  24. V. Guidi, M.C. Carotta, M. Ferroni, G. Martinelli, and M. Sacerdoti: Effect of dopants on grain coalescence and oxygen mobility in nanostructured titania anatase and rutile. J. Phys. Chem. B 107, 120 (2003).

    Article  CAS  Google Scholar 

  25. M. Sacerdoti, M.C. Dalconi, M.C. Carotta, B. Cavicchi, M. Ferroni, S. Colonna, and M.L. Di Vona: XAS investigation of tantalum and niobium in nanostructured TiO2 anatase. J. Solid State Chem. 177, 1781 (2004).

    Article  CAS  Google Scholar 

  26. A. Ahmad, S. Buzby, C. Ni, and S.I. Shah: Effect of Nb and Sc doping on the phase transformation of sol-gel processed TiO2 nanoparticles. J. Nanosci. Nanotechnol. 8, 2410 (2008).

    Article  CAS  Google Scholar 

  27. A. Ahmad, J.A. Shah, S. Buzby, and S.I. Shah: Structural effects of codoping of Nb and Sc in titanium dioxide nanoparticles. Eur. J. Inorg. Chem. 948 (2008).

    Google Scholar 

  28. T. Ishigaki and J.G. Li: Synthesis of functional TiO2-based nanoparticles in radio frequency induction thermal plasma. Pure Appl. Chem. 80, 1971 (2008).

    Article  CAS  Google Scholar 

  29. T. Ishigaki: Synthesis of ceramic nanoparticles with non-equilibrium crystal structures and chemical compositions by controlled thermal plasma processing. J. Ceram. Soc. Jpn. 116, 1351 (2008).

    Article  Google Scholar 

  30. Y.L. Li and T. Ishigaki: Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J. Phys. Chem. B 108, 15536 (2004).

    Article  CAS  Google Scholar 

  31. X.H. Wang, J.G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, and T. Ishigaki: Pyrogenic lron(III)-doped TiO2 nanopowders synthesized in RF thermal plasma: Phase formation, defect structure, band gap, and magnetic properties. J. Am. Chem. Soc. 127, 10982 (2005).

    Article  CAS  Google Scholar 

  32. R.A. Spurr and H. Myers: Quantitative analysis of anatase-rutile mixtures with an x-ray diffractometer. Anal. Chem. 29, 760 (1957).

    Article  CAS  Google Scholar 

  33. J.G. Li, M. Ikeda, C.C. Tang, Y. Moriyoshi, H. Hamanaka, and T. Ishigaki: Chlorinated nanocrystalline TiO2 powders via one-step Ar/O2 radio frequency thermal plasma oxidizing mists of TiCl3 solution: Phase structure and photocatalytic performance. J. Phys. Chem. C 111, 18018 (2007).

    Article  CAS  Google Scholar 

  34. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, and L.Z. Zhang: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002).

    Article  CAS  Google Scholar 

  35. A. Hagfeldt and M. Gratzel: Light-induced redox reaction in nanocrystalline system. Chem. Rev. 95, 49 (1995).

    Article  CAS  Google Scholar 

  36. E.E. Latta and M. Ronay: Catalytic oxidation of niobium. Phys. Rev. Lett. 53, 948 (1984).

    Article  CAS  Google Scholar 

  37. D. Morris, Y. Dou, J. Rebane, C.E.J. Mitchell, R.G. Egdell, D.S.L. Law, A. Vittadini, and M. Casarin: Photoemission and STM study of the electronic structure of Nb-doped TiO2. Phys. Rev. B 61, 13445 (2000).

    Article  CAS  Google Scholar 

  38. C.L. Qiu, L. Liu, M. Sun, and S.M. Zhang: The effect of Nb addition on mechanical properties, corrosion behavior, and metal-ion release of ZrAlCuNi bulk metallic glasses in artificial body fluid. J. Biomed. Mater. Res. Part A 75, 950 (2005).

    Article  CAS  Google Scholar 

  39. J.D. Zhang, S. Fung, L.B. Lin, and Z.J. Liao: Ti ion valence variation induced by ionizing radiation at TiO2/Si interface. Surf. Coat. Tech. 158, 238 (2002).

    Article  Google Scholar 

  40. C.R. Cho, J.P. Kim, J.Y. Hwang, S.Y. Jeong, Y.G. Joh, and D.H. Kim: High resolution elemental and magnetic distribution mapping and chemical bonding states of Co:TiO2 films: A SAM, MFM and XPS study. Jpn. J. Appl. Phys. 43, L1323 (2004).

    Article  CAS  Google Scholar 

  41. F.A. Kröger and H.J. Vink: Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307 (1956).

    Article  Google Scholar 

  42. Y.L. Li and T. Ishigaki: Thermodynamic analysis of nucleation of anatase and rutile from TiO2 melt. J. Cryst. Growth 242, 511 (2002).

    Article  CAS  Google Scholar 

  43. R.D. Shannon: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  44. H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa, and K. Yamashita: Density-functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstitial oxygen. J. Chem. Phys. 131, 034702 (2009).

    Article  CAS  Google Scholar 

  45. H. Nogawa, T. Hitosugi, A. Chikamatsu, S. Nakao, Y. Hirose, T. Shimada, H. Kumigashira, M. Oshima, and T. Hasegawa: Carrier compensation by excess oxygen atoms in anatase Ti0.94Nb0.06O2+d epitaxial thin films. Jpn. J. Appl. Phys. 49, 041102 (2010).

    Article  CAS  Google Scholar 

  46. M.K. Akhtar, S.E. Pratsinis, and S.V.R. Mastrangelo: Dopants in vapor-phase synthesis of titania powders. J. Am. Ceram. Soc. 75, 3408 (1992).

    Article  CAS  Google Scholar 

  47. S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, A. Nakano, R.K. Kalia, and P. Vashishta: Role of atomic charge transfer on sintering of TiO2 nanoparticles: Variable-charge molecular dynamics. J. Appl. Phys. 88, 6011 (2000).

    Article  CAS  Google Scholar 

  48. S. Hishita, I. Mutoh, K. Koumoto, and H. Yanagida: Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides. Ceram. Int. 9, 61 (1983).

    Article  CAS  Google Scholar 

  49. J.G. Li, X.H. Wang, H. Kamiyama, T. Ishigaki, and T. Sekiguchi: RF plasma processing of Er-doped TiO2 luminescent nanoparticles. Thin Solid Films 506, 292 (2006).

    Article  CAS  Google Scholar 

  50. S. Vemury and S.E. Pratsinis: Dopants in flame synthesis of titania. J. Am. Ceram. Soc. 78, 2984 (1995).

    Article  CAS  Google Scholar 

  51. M.A. Barakat, G. Hayes, and S.I. Shah: Effect of cobalt doping on the phase transformation of TiO2 nanoparticles. J. Nanosci. Nanotechnol. 5, 759 (2005).

    Article  CAS  Google Scholar 

  52. Y.H. Zhang, C.K. Chan, J.F. Porter, and W. Guo: Micro-Raman spectroscopic characterization of nanosized TiO2 powders prepared by vapor hydrolysis. J. Mater. Res. 13, 2602 (1998).

    Article  CAS  Google Scholar 

  53. J.C. Parker and R.W. Siegel: Raman microprobe study of nanophase TiO2 and oxidation-induced spectral changes. J. Mater. Res. 5, 1246 (1990).

    Article  CAS  Google Scholar 

  54. N. Serpone, D. Lawless, and R. Khairutdinov: Size effects on the photophysical properties of colloidal anatase TiO2 particles-size quantization or direct transitions in this indirect semiconductor. J. Phys. Chem. 99, 16646 (1995).

    Article  CAS  Google Scholar 

  55. C. Kormann, D.W. Bahnemann, and M.R. Hoffmann: Preparation and characterization of quantum-size titanium-dioxide. J. Phys. Chem. 92, 5196 (1988).

    Article  CAS  Google Scholar 

  56. M.M. Rahman, K.M. Krishna, T. Soga, T. Jimbo, and M. Umeno: Optical properties and x-ray photoelectron spectroscopic study of pure and Pb-doped TiO2 thin films. J. Phys. Chem. Solids 60, 201 (1999).

    Article  CAS  Google Scholar 

  57. J.G. Yu, J.C. Yu, W.K. Ho, and Z.T. Jiang: Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. N. J. Chem. 26, 607 (2002).

    Article  CAS  Google Scholar 

  58. N. Daude, C. Gout, and C. Jouanin: Electronic band-structure of titanium-dioxide. Phys. Rev. B 15, 3229 (1977).

    Article  CAS  Google Scholar 

  59. J.G. Li, X. Yang, and T. Ishigaki: Urea coordinated titanium trichloride TiIII[OC(NH)2]6Cl3: A single molecular precursor yielding highly visible light responsive TiO2 nanocrystallites. J. Phys. Chem. B 110, 14611 (2006).

    Article  CAS  Google Scholar 

  60. R.K. Sharma and M.C. Bhatnagar: Improvement of the oxygen gas sensitivity in doped TiO2 thick films. Sens. Actuators, B 56, 215 (1999).

    Article  CAS  Google Scholar 

  61. M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  62. R.I. Bickley, T. Gonzalezcarreno, J.S. Lees, L. Palmisano, and R.J.D. Tilley: A structural investigation of titanium-dioxide photocatalysis. J. Solid State Chem. 92, 178 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to our colleagues at NIMS, Mr. Yoshiyuki Yajima and Mr. Satoshi Takenouchi, for their chemical analysis of the synthesized nanosized powders. This work was partially supported by KAKENHI, a Grant-in-Aid for Scientific Research (B 19360334) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takamasa Ishigaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Ikeda, M., Uchikoshi, T. et al. High-concentration niobium (V) doping into TiO2 nanoparticles synthesized by thermal plasma processing. Journal of Materials Research 26, 658–671 (2011). https://doi.org/10.1557/jmr.2011.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.16

Navigation