Skip to main content

Advertisement

Log in

Importance of line and interfacial energies during VLS growth of finely stranded silica nanowires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A rich research history exists for crystalline growth by vapor–liquid–solid (VLS) methods, but not for amorphous growth. Yet VLS growth in the absence of crystallographic influences provides an ideal laboratory for exploring surface energy effects, including the role of line tension. We discuss the growth of amorphous silica nanowires from indium droplets by a modified VLS method. Multiple strands issue from each droplet, each strand having <1% (i.e.,?<?5 nm) of the radius of the droplet. We analyze the surface forces for this system, including line tension, and combine data in a novel way to estimate the surface energy of silica, the interfacial energy of liquid indium on silica, and the line tension at the three-phase boundary. The results suggest that the growth of these silica strands would be impossible without the presence of a negative line tension that also serves to stabilize the strand radii against perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.

Similar content being viewed by others

References

  1. R.S. Wagner: Whisker Technology, edited by A.P. Levitt. (Wiley Interscience, New York, 1970), p. 47.

  2. E.I. Givargizov: Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20 (1975).

    Article  CAS  Google Scholar 

  3. K.W. Schwarz and J. Tersoff: From droplets to nanowires: Dynamics of vapor–liquid–solid growth. Phys. Rev. Lett. 102, 206101 (2009).

    Article  CAS  Google Scholar 

  4. N. Li, T.Y. Tan, and U. Gösele: Chemical tension and global equilibrium in VLS nanostructure growth process. Appl. Phys. A 86, 433 (2007).

    Article  CAS  Google Scholar 

  5. Z. Pan, S. Dai, D.B. Beach, and D.H. Lowndes: Temperature dependence of morphologies of aligned silicon oxide nanowire assemblies catalyzed by molten gallium. Nano Lett. 3, 1279 (2003).

    Article  CAS  Google Scholar 

  6. B. Zheng, Y. Wu, P. Yang, and J. Liu: Synthesis of ultra-long and highly oriented silicon oxide nanowires from liquid alloys. Adv. Mater. 14, 122 (2002).

    Article  Google Scholar 

  7. M.K. Sunkara, S. Sharma, H. Chandrasekaran, M. Talbott, K. Krogman, and G. Bhimarasetti: Bulk synthesis of a-SixNyH and a-SixOy straight and coiled nanowires. J. Mater. Chem. 14, 590 (2004).

    Article  CAS  Google Scholar 

  8. J. Zhang, Y. Yang, S. Ding, J. Li, and X. Wang: Bimetal Ga-Sn catalyzed growth for the novel morphologies of silicon oxide nanowires. Mater. Sci. Eng., B 150, 180 (2008).

    Article  CAS  Google Scholar 

  9. M. Bettge, S. MacLaren, S. Burdin, J.-G. Wen, D. Abraham, I. Petrov, and E. Sammann: Low-temperature vapour–liquid–solid (VLS) growth of vertically aligned silicon oxide nanowires using concurrent ion bombardment. Nanotechnology 20, 115607 (2009).

    Article  Google Scholar 

  10. A.W. Neumann and K. Jan: Spelt: Applied Surface Thermodynamics. (Marcel Dekker, New York, 1996).

    Google Scholar 

  11. V. Schmidt, S. Senz, and U. Gösele: The shape of epitaxially grown silicon nanowires and the influence of line tension. Appl. Phys. A 80, 445 (2005).

    Article  CAS  Google Scholar 

  12. A. Amirfazli and A.W. Neumann: Status of the three-phase line tension. Adv. Colloid. Interfac. 110, 121(2004).

    Article  CAS  Google Scholar 

  13. S. Sivaramakrishnan, J.G. Wen, M.E. Scarpelli, B.J. Pierce, and J.-M. Zuo: Equilibrium shapes and triple line energy of epitaxial gold nanocrystals supported on TiO2(110). Phys. Rev. B 82, 195421 (2010).

    Article  Google Scholar 

  14. S. Kodambaka, J. Tersoff, M.C. Reuter, and F.M. Ross: Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 96, 096105 (2006).

    Article  CAS  Google Scholar 

  15. S. Kodambaka, J. Tersoff, M.C. Reuter, and F.M. Ross: Germanium nanowire growth below the eutectic temperature. Science 316, 729 (2007).

    Article  CAS  Google Scholar 

  16. G. Lang: Surface tension of liquid elements, in Section 20, CRC Handbook of Chemistry and Physics, 89th ed. (Internet Version 2009), edited by W.M. Haynes (CRC Press/Taylor and Francis, Boca Raton, FL, 2009).

  17. J.V. Naidich and J.N. Chuvashov: Wettability and contact interaction of gallium-containing melts with non-metallic solids. J. Mater. Sci. 18, 2071 (1983).

    Article  CAS  Google Scholar 

  18. D.T. Livey and P. Murray: Surface energies of solid oxides and carbides. J. Am. Ceram. Soc. 39, 363 (1956).

    Article  Google Scholar 

  19. Y.I. Tarasevich: Surface energies of oxides and silicates. Theor. Exp. Chem. 42, 145 (2006).

    Article  CAS  Google Scholar 

  20. F.L. Harding and D.R. Rossington: Wetting of ceramic oxides by molten metals under ultrahigh Vacuum. J. Am. Ceram. Soc. 53, 87 (1970).

    Article  CAS  Google Scholar 

  21. A. Marmur: Line tension and the intrinsic contact angle in solid–liquid–fluid systems. J. Colloid Interface Sci. 186, 462 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The research was carried out in collaboration with Argonne National Laboratory (ANL) and in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the U.S. Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471. Financial support was provided through ANL under Grant No. DOE ANL 1F-00861. We thank Changhui Lei for his help during TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Bettge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettge, M., MacLaren, S., Burdin, S. et al. Importance of line and interfacial energies during VLS growth of finely stranded silica nanowires. Journal of Materials Research 26, 2247–2253 (2011). https://doi.org/10.1557/jmr.2011.151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.151

Navigation