Skip to main content
Log in

Continuum modeling of large-strain deformation modes in gold nanowires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Metallic nanostructures and specifically nanowires can be used for technological breakthroughs. Experimental measurements have provided insights on the mechanical properties of metallic nanostructures. In conjunction, modeling analyses provide an understanding of the underlying deformation and strengthening mechanisms in nanostructures. Most modeling studies on nanostructures are based on atomistic and molecular dynamics simulations, and though invaluable, they are limited to nanoscale dimensions of a few tens of nanometers, at small temporal scales, and physically unrealistic strain rates. Furthermore, most of the current applications for free-standing metallic nanostructures require high aspect ratios with at least one dimension greater than a few hundred nanometers. A continuum microstructurally based approach can, therefore, provide insights on design of one-dimensional nanowires on a physically relevant scale. Hence, we use a multiple-slip crystal plasticity formulation that is adapted to single crystal gold nanowires to simulate the experimental setup for a two-end fixed nanowire subjected to bending.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. T. Marinov, A. Buldum, C.B. Clemons, K.L. Kreider, G.W. Young, and S.I. Hariharan: Field emission from coated nanowires. J. Appl. Phys. 98, 044314 (2005).

    Article  Google Scholar 

  2. Y.-H. Lee, C.-H. Choi: Y.-T. Jang, E.-K. Kim, B.-K. Ju, N.-K. Min, and J.-H. Ahn: Tungsten nanowires and their field-emission properties. Appl. Phys. Lett. 81, 745 (2002).

    Article  CAS  Google Scholar 

  3. C.-K. Lee, B. Lee, J. Ihm, and S. Han: Field emission of metal nanowires studied by first-principle methods. Nanotechnology 18, 475706 (2007).

    Article  Google Scholar 

  4. L. Dong, J. Bush, V. Chirayos, R. Solanki, and J. Jiao: Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett. 5, 2112 (2005).

    Article  CAS  Google Scholar 

  5. U. Yogeswaran and S.-M. Chen: A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors (Basel Switzerland) 8, 290 (2008).

    Article  CAS  Google Scholar 

  6. E.C. Walter, R.M. Penner, H. Liu, K.H. Ng, M.P. Zach, and F. Favier: Sensors from electrodeposited metal nanowires. Surf. Interface Anal. 34, 409 (2002).

    Article  CAS  Google Scholar 

  7. Y.-D. Ko, J.-G. Kang, J.-G. Park, S. Lee, and D.-W. Kim: Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20, 455701 (2009).

    Article  Google Scholar 

  8. W.-K. Lee, S. Chen, A. Chilkoti, and S. Zauscher: Fabrication of gold nanowires by electric-field-induced scanning probe lithography and in situ chemical development. Small 3, 249 (2007).

    Article  CAS  Google Scholar 

  9. R. Ji, W. Lee, R. Scholz, U. Gosele, and K. Nielsch: Templated fabrication of nanowire and nanoring arrays based on interference lithography and electrochemical deposition. Adv. Mater. 18, 2593 (2006).

    Article  CAS  Google Scholar 

  10. M.V. Sosnova, N.L. Dmitruk, A.V. Korovin, S.V. Mamykin, V.I. Mynko, and O.S. Lytvyn: Local plasmon excitations in one-dimensional array of metal nanowires for sensor applications. Appl. Phys. B 99, 493 (2010).

    Article  CAS  Google Scholar 

  11. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization and applications. Adv. Mater. 15, 353 (2003).

    Article  CAS  Google Scholar 

  12. B. Hyde, H.D. Espinosa, and D. Farkas: An atomistic investigation of elastic and plastic properties of Au nanowires. JOM 57–, 62 (2005).

    Article  CAS  Google Scholar 

  13. H.S. Park and J.A. Zimmerman: Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 054106 (2005).

    Article  Google Scholar 

  14. K. Gall, J. Diao, and M.L. Dunn: The strength of gold nanowires. Nano Lett. 4, 2431 (2004).

    Article  CAS  Google Scholar 

  15. J.W. Crill, X. Ji, D.L. Irving, D.W. Brenner, and C.W. Padgett: Atomic and multi-scale modeling of non-equilibrium dynamics at metal-metal contacts. Modell. Simul. Mater. Sci. Eng. 18, 034001 (2010).

    Article  Google Scholar 

  16. M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton: Length scale and time scale effects on the plastic flow of fcc metals. Acta Mater. 49, 4363 (2001).

    Article  CAS  Google Scholar 

  17. S.P. Timoshenko and J.N. Goodier: Theory of Elasticity (McGraw Hill Higher Education, New York; 3rd edition, 1970).

    Google Scholar 

  18. X. Li, H. Gao, C.J. Murphy, and K.K. Caswell: Nanoindentation of silver nanowires. Nano Lett. 3, 1495 (2003).

    Article  CAS  Google Scholar 

  19. V. Rodrigues and D. Ugarte: Structural and electronic properties of gold nanowires. Eur. Phys. J. D 16, 395 (2001).

    Article  CAS  Google Scholar 

  20. N. Agrait, G. Rubio, and S. Vieira: Plastic deformation of nanometer-scale gold connective necks. Phys. Rev. Lett. 74, 3995 (1995).

    Article  CAS  Google Scholar 

  21. E.W. Wong, P.E. Sheehan, and C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997).

    Article  CAS  Google Scholar 

  22. B. Wu, A. Heidelberg, and J.J. Boland: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 (2005).

    Article  CAS  Google Scholar 

  23. C.A. Volkert and E.T. Lilleodden: Size effects in the deformation of sub-micron Au columns. Philos. Mag. 86, 5567 (2006).

    Article  CAS  Google Scholar 

  24. O. Rezvanian and M.A. Zikry: Inelastic contact behavior of crystalline asperities in rf MEMS devices. J. Eng. Mater. Technol. 131, 011002 (2009).

    Article  Google Scholar 

  25. M.A. Zikry and S. Nemat-Nasser: High strain-rate localization and failure of crystalline materials. Mech. Mater. 10, 215 (1990).

    Article  Google Scholar 

  26. O. Rezvanian, M.A. Zikry, and A.M. Rajendran: Statistically stored, geometrically necessary and grain boundary dislocation densities: Microstructural representation and modelling. Proc. R. Soc. Lond., Ser. A 463, 2833 (2007).

    CAS  Google Scholar 

  27. M.A. Zikry and M. Kao: Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765 (1996).

    Article  CAS  Google Scholar 

  28. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Google Scholar 

  29. C.G. Broyden: The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. J. Inst. Math. Appl. 6(3), 222 (1970).

    Article  Google Scholar 

  30. T.J.R Hughes: Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng. 15, 1413 (1980).

    Article  Google Scholar 

  31. M. Dietiker, R.D. Nyilas, C. Solenthaler, and R. Spolenak: Nanoindentation of single-crystalline gold thin films: Correlating hardness and the onset of plasticity. Acta Mater. 56, 3887 (2008).

    Article  CAS  Google Scholar 

  32. V.M. Hallmark, S. Chiang, J.F. Rabolt, J.D. Swalen, and R.J. Wilson: Observation of atomic corrugation on Au (111) by scanning tunneling microscopy. Phys. Rev. Lett. 59, 2879 (1987).

    Article  CAS  Google Scholar 

  33. Y. Champion, C. Langlois, S. Guerin-Mailly, P. Langlois, J.-L. Bonnentien, and M.J. Hytch: Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300, 310 (2003).

    Article  CAS  Google Scholar 

  34. D.-B. Shan, C.-J. Wang, B. Guo, and X.-W. Wang: Effect of thickness and grain size on material behavior in micro-bending. Trans. Nonferrous Met. Soc. China 19, 507 (2009).

    Article  Google Scholar 

  35. M. Riaz, A. Fulati, L.L. Yang, O. Nur, M. Willander, and P. Klason: Bending flexibility, kinking, and buckling characterization of ZnO nanorods/nanowires grown on different substrates by high and low temperature methods. J. Appl. Phys. 104, 104306 (2008).

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Extreme Friction MURI program, AFOSR grant FA9550-04-1-0381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed A. Zikry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezvanian, O., Zikry, M.A. Continuum modeling of large-strain deformation modes in gold nanowires. Journal of Materials Research 26, 2286–2292 (2011). https://doi.org/10.1557/jmr.2011.148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.148

Navigation