Skip to main content
Log in

Ferromagnetic resonance on Ni nanowire arrays

  • Reviews
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ferromagnetic resonance investigations on Ni nanowires are reported. The angular dependence of the resonance line position is analyzed within a thermodynamic approach that includes shape anisotropy (ellipsoids of revolution), magnetocrystalline anisotropies (cubic and uniaxial), and dipole–dipole interactions. The results are supported by hysteresis loops, obtained on the same sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.

Similar content being viewed by others

References

  1. A. Aharoni: Effect of surface anisotropy on the exchange resonance modes. J. Appl. Phys. 81, 830 (1997).

    Article  CAS  Google Scholar 

  2. R. Skomski, H. Zeng, M. Zheng, and D.J. Sellmyer: Magnetic localization in transition-metal nanowires. Phys. Rev. B 62, 3900 (2000).

    Article  CAS  Google Scholar 

  3. S. Rajagopalan and J.K. Furdyna: Magnetic dimensional resonances in Fe3O4 spheres. Phys. Rev. B 39, 4 (1989).

    Article  Google Scholar 

  4. J. Dubois, J. Colin, J.L. Duvail, and L. Piraux: Evidence for strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 61, 14315 (2000).

    Article  CAS  Google Scholar 

  5. P.S. Branicio and J.P. Rino: Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study. Phys. Rev. B 62, 16950 (2000).

    Article  CAS  Google Scholar 

  6. S.V. Vonsovskii: Magnetism (John Wiley, New York, 1974).

    Google Scholar 

  7. A.H. Morrish: The Physical Principles of Magnetism (John Wiley, New York, 1965).

    Google Scholar 

  8. G. Goglio, S. Pignard, A. Radulescu, L. Piraux, I. Huinen, D. Vanhoenacker, and A.V. Vorst: Microwave properties of metallic nanowires. Appl. Phys. Lett. 75, 1769 (1999).

    Article  CAS  Google Scholar 

  9. J.L. Costa-Kramer: Conductance quantization at room temperature in magnetic and nonmagnetic metallic nanowires. Phys. Rev. B 55, R4875 (1997).

    Article  CAS  Google Scholar 

  10. A.E. Oropesa, M. Demand, L. Piraux, I. Huynen, and U. Ebels: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001).

    Article  Google Scholar 

  11. H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon, and S. Bandyopdadhyay: Magnetic properties of self-assembled Co nanowires of varying length and diameter. J. Appl. Phys. 87, 4718 (2000).

    Article  CAS  Google Scholar 

  12. K. Ounadjela, R. Ferre, L. Louail, J.M. George, J.L. Maurice, L. Piraux, and S. Dubois: Magnetization reversal in cobalt and nickel electrodeposited nanowires. J. Appl. Phys. 81, 5455 (1997).

    Article  CAS  Google Scholar 

  13. J. Meier, B. Doudin, and J-Ph. Ansermet: Magnetic properties of nanosized wires. J. Appl. Phys. 79, 6010 (1996).

    Article  CAS  Google Scholar 

  14. V. Vonsovski: Ferromagnetic Resonance (Pergamon Press, Oxford, 1966).

    Google Scholar 

  15. A. Aharoni: Introduction to the Theory of Ferromagnetism (Oxford University Press, Oxford, 1996).

    Google Scholar 

  16. W.F. Brown Jr.: Micromagnetics, domains, and resonance. J. Appl. Phys. 30, 625 (1959).

    Google Scholar 

  17. U. Ebels, J.L. Duvail, P.E. Wigen, L. Piraux, L.D. Buda, and K. Ounadjella: Ferromagnetic resonance studies of Ni nanowire arrays. Phys. Rev. B 64, 144421 (2001).

    Article  Google Scholar 

  18. J.E. Wegrowe, D. Kelly, A. Franck, S.E. Gilbert, and J. Ansermet: Magnetoresistance of Ferromagnetic Nanowires. Phys. Rev. Lett. 82, 3681 (1999).

    Article  CAS  Google Scholar 

  19. Y. Jaccard, Ph. Guittienne, D. Kelly, J. Wegrowe, and J. Ansermet: Uniform magnetization rotation in single ferromagnetic nanowires. Phys. Rev. B 62, 1141 (2000).

    Article  CAS  Google Scholar 

  20. D.J. Sellmyer, M. Zheng, and R. Skomski: Magnetism of Fe, Co, and Ni nanowires in self-assembled arrays. J. Phys. Condens. Matter. 13, R433 (2001).

    Article  CAS  Google Scholar 

  21. P.M. Paulus, F. Luis, M. Kroll, G. Schmid, and L.J. de Longh: Low-temperature study of the magnetization reversal and magnetic anisotropy of Fe, Ni, and Co nanowires. J. Magn. Magn. Mater. 24, 180 (2001).

    Article  Google Scholar 

  22. H. Cao, C. Tie, Z. Xu, J. Hong, and H. Sang: Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl. Phys. Lett. 78, 1592 (2001).

    Article  CAS  Google Scholar 

  23. A.I. Akhiezer, V.G. Bar’yakhtar, and S.V. Peletminskii: Spin Waves (North Holland, Amsterdam, 1968).

    Google Scholar 

  24. A. Aharoni: Exchange resonance modes in a ferromagnetic sphere. J. Appl. Phys. 69, 7762 (1991).

    Article  Google Scholar 

  25. R. Skomski, M. Chipara, and D.J. Sellmyer: Spin-wave modes in magnetic nanowires. J. Appl. Phys. 93, 7604 (2003).

    Article  CAS  Google Scholar 

  26. M. Chipara, R. Skomski, and D. J. Sellmyer: Magnetic modes in Ni nanowires. J. Magn. Magn. Mater. 249, 246 (2002).

    Article  CAS  Google Scholar 

  27. A. Maeda, M. Kume, T. Ogura, K. Kuroki, T. Yamada, M. Nishikawa, and Y. Harada: Magnetic wire and box arrays. J. Appl. Phys. 76, 6667 (1994).

    Article  CAS  Google Scholar 

  28. R. Skomski and J.M.D Coey: Permanent Magnetism (Institute of Physics, Bristol 1999).

    Google Scholar 

  29. W. Wernsdorfer, K. Hasselbach, A. Benoit, B. Barbara, B. Doudin, J. Meier, J. Ansermet, and D. Mailly: Measurements of magnetization switching in individual nickel nanowires. Phys. Rev. B 55, 11552 (1997).

    Article  CAS  Google Scholar 

  30. J. Jorritsma and J.A. Mydosh: Temperature-dependent magnetic anisotropy in Ni nanowires. J. Appl. Phys. 84, 901 (1998).

    Article  CAS  Google Scholar 

  31. L. Sun, P.C. Searson, and C.L. Chien: Electrochemical deposition of nickel nanowire arrays in single crystal mica films. J. Appl. Phys. 74, 2803 (1999).

    CAS  Google Scholar 

  32. G. Goglio, S. Pignard, A. Radulescu, L. Piraux, I. Huinen, D. Vanhoenacker, and A.V. Vorst: Microwave properties of metallic nanowires. Appl. Phys. Lett. 75, 1769 (1999).

    Article  CAS  Google Scholar 

  33. J. Dubois, J. Colin, J.L. Duvail, and L. Piraux: Evidence for strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 61, 14315 (2000).

    Article  CAS  Google Scholar 

  34. M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyay, R.D. Kirby, and D.J. Sellmyer: Magnetic properties of Ni nanowires in self-assembled arrays. Phys. Rev. B 62, 12282 (2000).

    Article  CAS  Google Scholar 

  35. A.E. Oropesa, M. Demand, L. Piraux, I. Huynen, and U. Ebels: Dipolar interactions in arrays of nickel nanowires studied by ferromagnetic resonance. Phys. Rev. B 63, 104415 (2001).

    Article  Google Scholar 

Download references

Acknowledgment

The research done at University of Texas Pan American was supported by U.S. Army Research Office (AMSRD-ARL-RO-SI Proposal No. 54498-MS-ISP). The research at University of Nebraska-Lincoln has been supported by NSF-MRSEC program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Chipara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipara, M., Skomski, R., Kirby, R. et al. Ferromagnetic resonance on Ni nanowire arrays. Journal of Materials Research 26, 2169–2174 (2011). https://doi.org/10.1557/jmr.2011.146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.146

Navigation