Skip to main content
Log in

Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Epitaxially oriented silicon nanowires (SiNWs) were grown on (111) Si substrates by the vapor–liquid–solid technique in an atmospheric-pressure chemical vapor deposition (APCVD) system using Au as the catalyst and SiCl4 as the source gas. The dependencies of SiNW growth rate on the growth temperature and SiCl4 partial pressure (PSiCl4) were investigated, and the experimental results were compared with calculated supersaturation curves for Si obtained from a gas phase equilibrium model of the SiCl4–H2 system. The SiNW growth rate was found to be weakly dependent on temperature but strongly dependent on the PSiCl4, exhibiting a maximum value qualitatively similar to that predicted from the equilibrium model. The results indicate that SiNW growth from SiCl4 is limited by gas phase chemistry and transport of reactant species to the growth surface under APCVD conditions. The experimental results are discussed within the context of a gas phase mass transport model that takes into account changes in equilibrium partial pressure due to curvature-related Gibbs–Thomson effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. R.S. Wagner and W.C. Ellis: Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89 (1964).

    Article  CAS  Google Scholar 

  2. R.S. Wagner and C.J. Doherty: Controlled vapor–liquid–solid growth of silicon crystals. J. Electrochem. Soc. 113(12), 1300 (1966).

    Article  CAS  Google Scholar 

  3. D.W.F James and C. Lewis: Silicon whisker growth and epitaxy by vapor–liquid–solid mechanism. Br. J. Appl. Phys. 16(8), 1089 (1965).

    Article  CAS  Google Scholar 

  4. E.I. Givargizov: Fundamental aspects of VLS growth. J. Cryst. Growth. 31, 20 (1975).

    Article  CAS  Google Scholar 

  5. A.P. Goodey, S.M. Eichfeld, K.K. Lew, J.M. Redwing, and T.E. Mallouk: Silicon nanowire photoelectrochemical cells. J. Am. Chem. Soc. 129(41), 12344 (2007).

    Article  CAS  Google Scholar 

  6. M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater: Photovoltaic measurements in single-nanowire silicon solar cells. Nano Lett. 8(2), 710 (2008).

    Article  CAS  Google Scholar 

  7. B.Z. Tian, X.L. Zhang, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, and C.M. Lieber: Coaxial silicon nanowires as solar cell and nanoelectronic power sources. Nature 449(7164), 885 (2007).

    Article  CAS  Google Scholar 

  8. E.C. Garnett and P.D. Yang: Silicon nanowire radial p-n junction solar cells. J. Am. Chem. Soc. 130(29), 9224 (2008).

    Article  CAS  Google Scholar 

  9. J. Goldberger, A.I. Hochbaum, R. Fan, and P.D. Yang: Silicon vertically integrated nanowire field effect transistors. Nano Lett. 6(5), 973 (2006).

    Article  CAS  Google Scholar 

  10. A.I. Hochbaum, R. Fan, R.R. He, and P.D. Yang: Controlled growth of silicon nanowire arrays for device integration. Nano Lett. 5(3), 457 (2005).

    Article  CAS  Google Scholar 

  11. S. Sharma, T.I. Kamins, and R.S. Williams: Synthesis of thin silicon nanowires using gold-catalyzed chemical vapor deposition. Appl. Phys. A Mater. Sci. Process. 80(6), 1225 (2005).

    Article  CAS  Google Scholar 

  12. B.M. Kayes, M.A. Filler, M.C. Putnam, M.D. Kelzenberg, N.S. Lewis, and H.A. Atwater: Growth of vertically aligned Si wire arrays over large areas (>1 cm2) with Au and Cu catalysts. Appl. Phys. Lett. 91(10), 103110 (2007).

    Article  Google Scholar 

  13. C.E. Kendrick, H.P. Yoon, Y.A. Yuwen, G.D. Barber, H.T. Shen, T.E. Mallouk, E.C. Dickey, T.S. Mayer, and J.M. Redwing: Radial junction silicon wire array solar cells fabricated by gold-catalyzed vapor–liquid–solid growth. Appl. Phys. Lett. 97(14), 143108 (2010).

    Article  Google Scholar 

  14. H. Jeong, T.E. Park, H.K. Seong, M. Kim, U. Kim, and H.J. Choi: Growth kinetics of silicon nanowires by platinum assisted vapour–liquid–solid mechanism. Chem. Phys. Lett. 467(4–6), 331 (2009).

    Article  CAS  Google Scholar 

  15. J. Weyher: Some notes on growth kinetics and morphology of VLS silicon-crystals grown with platinum and gold as liquid-forming agents. J. Cryst. Growth 43(2), 235 (1978).

    Article  CAS  Google Scholar 

  16. A. Mao, H.T. Ng, P. Nguyen, M. McNeil, and M.J. Meyyappan: Silicon nanowire synthesis by a vapor–liquid–solid approach. J. Nanosci. Nanotechnol. 5(5), 831 (2005).

    Article  CAS  Google Scholar 

  17. Y.J. Zhang, Q. Zhang, N.L. Wang, Y.J. Yan, H.H. Zhou, and J. Zhu: Synthesis of thin Si whiskers (nanowires) using SiCl4. J. Cryst. Growth 226(2/3), 185 (2001).

    Article  CAS  Google Scholar 

  18. V. Schmidt, S. Senz, and U. Gosele: Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor–liquid–solid mechanism. Phys. Rev. B 75(4), 045335 (2007).

    Article  Google Scholar 

  19. H.C. Theuerer: Epitaxial silicon films by the hydrogen reduction of SiCl4. J. Electrochem. Soc. 108(7), 649 (1961).

    Article  CAS  Google Scholar 

  20. J. Bloem, Y.S. Oei, H.H.C Demoor, J.H.L Hanssen, and L.J. Giling: Epitaxial growth of silicon by CVD in a hot-wall furnace. J. Electrochem. Soc. 132(8), 1973 (1985).

    Article  CAS  Google Scholar 

  21. L.P. Hunt and E. Sirtl: Thorough thermodynamic evaluation of silicon–hydrogen–chlorine system. J. Electrochem. Soc. 119(12), 1741 (1972).

    Article  CAS  Google Scholar 

  22. E. Sirtl, L.P. Hunt, and D.H. Sawyer: High-temperature reactions in silicon–hydrogen–chlorine system. J. Electrochem. Soc. 121(7), 919 (1974).

    Article  CAS  Google Scholar 

  23. E.G. Bylander: Kinetics of silicon crystal growth from SiCl4 decomposition. J. Electrochem. Soc. 109(12), 1171 (1962).

    Article  CAS  Google Scholar 

  24. J. Bloem, Y.S. Oei, H.H.C Demoor, J.H.L Hanssen, and L.J. Giling: Near equilibrium growth of silicon by CVD I. The Si–Cl–H system. J. Cryst. Growth 65(1–3), 399 (1983).

    Article  CAS  Google Scholar 

  25. S.A. Dayeh and S.T. Picraux: Direct observation of nanoscale size effects in Ge semiconductor nanowire growth. Nano Lett. 10(10), 4032 (2010).

    Article  CAS  Google Scholar 

  26. L.E. Froberg, W. Seifert, and J. Johansson: Diameter-dependent growth rate of InAs nanowires. Phys. Rev. B 76(15), 4 (2007).

    Article  Google Scholar 

  27. E. De Jong, R.R. LaPierre, and J.Z. Wen: Detailed modeling of the epitaxial growth of GaAs nanowires. Nanotechnology 21(4), 10 (2010).

    Google Scholar 

  28. V.G. Dubrovskii, N.V. Sibirev, G.E. Cirlin, I.P. Soshnikov, W.H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.P. Nys, D. Stievenard, M. Moewe, L.C. Chuang, and C. Chang-Hasnain: Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires. Phys. Rev. B 79, 205316 (2009).

    Article  Google Scholar 

  29. K.K. Lew and J.M. Redwing: Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J. Cryst. Growth 254(1/2), 14 (2003).

    Article  CAS  Google Scholar 

  30. J. Bloem, W.A.P Claassen, and W. Valkenburg: Rate-determining reactions and surface species in CVD silicon 4. The SiCl4–H2–N2 and the SiHCl3–H2–N2 system. J. Cryst. Growth 57(1), 177 (1982).

    Article  CAS  Google Scholar 

  31. P. Van der Putte, L.J. Giling, and J. Bloem: Growth and etching of silicon in chemical vapor-deposition systems-influence of thermal-diffusion and temperature-gradient. J. Cryst. Growth 31, 299 (1975).

    Article  Google Scholar 

  32. M. Ohring: The Materials Science of Thin Films, 2nd ed. (Academic Press, San Diego, 2002).

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Department of Energy under contracts DE-FG02-05ER15749 and DE-FG36-08GO18010 and by the National Science Foundation under grant ECS-0609282. The TEM work was performed in the electron microscopy facility of the Materials Characterization Laboratory at Penn State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan M. Redwing.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichfeld, S.M., Shen, H., Eichfeld, C.M. et al. Gas phase equilibrium limitations on the vapor–liquid–solid growth of epitaxial silicon nanowires using SiCl4. Journal of Materials Research 26, 2207–2214 (2011). https://doi.org/10.1557/jmr.2011.144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.144

Navigation