Skip to main content
Log in

Preparation of Cu-doped γ-Fe2O3 nanowires with high coercivity by chemical vapor deposition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Iron oxides, including maghemite (γ-Fe2O3) and magnetite (Fe3O4), have been widely applied in many fields. For technological advances in the future, further improvements of their ferromagnetic properties are desirable. The development of iron ferrites with a large coercive field (Hc) is one of issues of consequence. For ferrites, however, enlarging the Hc value is not easy because of their low magnetocrystalling anisotropy constant. Here we report single-crystalline Cu-doped γ-Fe2O3 nanowires in which the controlled diameter (70–100 nm) and the graded Cu dopant (7, 10, and 15%) are directly obtained by a simple chemical vapor deposition technique. In particular, the coercive value (over 2 T) of 10% Cu-doped γ-Fe2O3 nanowires is much higher than that (<80 Oe) of undoped γ-Fe2O3 nanowires at room temperature. On the basis of the experimental magnetization data, the achievement of such a higher coercive field of Cu-doped γ-Fe2O3 (10%) nanowires is tentatively suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. O. Ishii and M. Sencia: High coercivity and high wear-resistance gamma-Fe2O3 thin-films. J. Appl. Phys. 77, 5828 (1995).

    Article  CAS  Google Scholar 

  2. J. Jin, K. Hashimoto, and S. Ohkoshi: Formation of spherical and rod-shaped epsilon-Fe2O3 nanocrystals with a large coercive field. J. Mater. Chem. 15, 1067 (2005).

    Article  CAS  Google Scholar 

  3. J. Jin, S. Ohkoshi, and K. Hashimoto: Giant coercive field of nanometer-sized iron oxide. Adv. Mater. 16, 48 (2004).

    Article  CAS  Google Scholar 

  4. N. Lu, X. Song, and J. Zhang: Crystal structure and magnetic properties of ultrafine nanocrystalline SmCo3 compound. Nanotechnology 21, 115708 (2010).

    Article  Google Scholar 

  5. H. Kronmuller: Recent developments in high-tech magnetic materials. J. Magn. Magn. Mater. 140–, 25 (1995).

    Article  Google Scholar 

  6. P. Dutta, A. Manivannan, M. Seehra, N. Shah, and G. Huffman: Magnetic properties of nearly defect-free maghemite nanocrystals. Phys. Rev. B 70, 174428 (2004).

    Article  Google Scholar 

  7. V. Kusigerski, M. Tadic, V. Spasojevic, B. Antic, D. Markovic, S. Boskovic, and B. Matovic: High coercivity of gamma-Fe2O3 nanoparticles obtained by a mechanochemically activated solid-state displacement reaction. Scr. Mater. 56, 883 (2007).

    Article  CAS  Google Scholar 

  8. M. Morales, S. Veintemillas-Verdaguer, and C. Serna: Magnetic properties of uniform gamma-Fe2O3 nanoparticles smaller than 5 nm prepared by laser pyrolysis. J. Mater. Res. 14, 3066 (1999).

    Article  CAS  Google Scholar 

  9. L. Li, J. Ding, and J. Xue: A facile green approach for synthesizing monodisperse magnetite nanoparticles. J. Mater. Res. 25, 810 (2010).

    Article  CAS  Google Scholar 

  10. D. Chicot, F. Roudet, V. Lepingle, and G. Louis: Strain gradient plasticity to study hardness behavior of magnetite (Fe3O4) under multicyclic indentation. J. Mater. Res. 24, 749 (2009).

    Article  CAS  Google Scholar 

  11. E. Tronc, C. Chaneac, and J.P. Jolivet: Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem. 139, 93 (1998).

    Article  CAS  Google Scholar 

  12. Y. Tseng, N. Souza-Neto, D. Haskel, M. Gich, C. Frontera, A. Roig, M. Veenendaal, and J. Nogues: Nonzero orbital moment in high coercivity ε-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys. Rev. B 79, 094404 (2009).

    Article  Google Scholar 

  13. Y. Ding, J. Morber, R. Snyder, and Z. Wang: Nanowire structural evolution from Fe3O4 to ε-Fe2O3. Adv. Funct. Mater. 17, 1172 (2007).

    Article  CAS  Google Scholar 

  14. S. Sakurai, A. Namai, K. Hashimoto, and S. Ohkoshi: First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-Phase). J. Am. Chem. Soc. 131, 18299 (2009).

    Article  CAS  Google Scholar 

  15. J. Lai, K.V. Shafi, K. Loos, A. Ulman, Y. Lee, T. Vogt, and C. Estournes: Doping gamma-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the alpha-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470 (2003).

    Article  CAS  Google Scholar 

  16. S. Chakrabarti, S. Mandal, and S. Chaudhuri: Cobalt doped γ-Fe2O3 nanoparticles: Synthesis and magnetic properties. Nanotechnology 16, 506 (2005).

    Article  CAS  Google Scholar 

  17. A. Bensaoula, C. Chu, P. Hor, A. Ignatiev, J. Liu, R. Meng, A. Mesarwi, J. Richardson, C. Ting, Y. Wang, and J. Wolfe: A study on Hc-enhancement in co-modified γ-Fe2O3. J. Magn. Magn. Mater. 54–, 1697 (1986).

    Article  Google Scholar 

  18. O. Helgason, J. Greneche, F. Berry, S. Morup, and F. Mosselmans: Tin- and titanium-doped gamma-Fe2O3 (maghemite). J. Phys. Cond. Mater. 13, 10785 (2001).

    Article  CAS  Google Scholar 

  19. M. Deng, T. Chin, and F. Chen: Fine structure and magnetic properties of Mn- and Co-doped nanocrystalline γ-Fe2O3. J. Appl. Phys. 75, 5888 (1994).

    Article  CAS  Google Scholar 

  20. Y. Zhu and C. Li: Materials science communication effect of doped silicon on structure and magnetic properties of γ-Fe2O3 particles. Mater. Chem. Phys. 51, 169 (1997).

    Article  CAS  Google Scholar 

  21. D. Tripathy, A. Adeyeye, C. Boothroyd, and S. Shannigrahi: Microstructure and magnetotransport properties of Cu-doped Fe3O4 films. J. Appl. Phys. 103, 07F701 (2008).

    Article  Google Scholar 

  22. Q. Yao, W. Liu, X.G. Zhao, and Z. Zhang: Structure and magnetic properties of Cu-doped SmCo6.7−xCuxCr0.3 magnets. J. Appl. Phys. 102, 093905 (2007).

    Article  Google Scholar 

  23. W. Li, T. Ohkubo, T. Akiya, H. Kato, and K. Hono: The role of Cu addition in the coercivity enhancement of sintered Nd-Fe-B permanent magnets. J. Mater. Res. 24, 413 (2009).

    Article  CAS  Google Scholar 

  24. A. Hussein, P. Murugaraj, C. Rix, and D. Mainwaring: The influence of Sb doping in achieving high magnetic coercivities in CoPt nanoparticles for micromagnet applications. J. Mater. Res. 24, 499 (2009).

    Article  CAS  Google Scholar 

  25. N. Yoshikawa, Z. Cao, D. Louzguin, G. Xie, and S. Taniguchi: Micro/nanostructure observation of microwave-heated Fe3O4. J. Mater. Res. 24, 1741 (2009).

    Article  CAS  Google Scholar 

  26. A. Zhu, X. Luo, and S. Dai: Chitosan-poly (acrylic acid) complex modified paramagnetic Fe3O4 nanoparticles for camptothecin loading and release. J. Mater. Res. 24, 2307 (2009).

    Article  CAS  Google Scholar 

  27. R. Ianos: An efficient solution for the single-step synthesis of 4CaO·Al2O3·Fe2O3 powders. J. Mater. Res. 24, 245 (2009).

    Article  CAS  Google Scholar 

  28. S. Zhou, X. Zhang, H. Gong, B. Zhang, Z. Wu, Z. Du, and S. Wu: Magnetic enhancement of pure gamma Fe2O3 nanochains by chemical vapor deposition. J. Phys. Cond. Mater. 20, 075217 (2008).

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province (No. 2008 HASTIT002), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 094100510015), and by the Natural Science Foundation of China under Grant No. 20971036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Min Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, SM., Lou, SY., Wang, YQ. et al. Preparation of Cu-doped γ-Fe2O3 nanowires with high coercivity by chemical vapor deposition. Journal of Materials Research 26, 1634–1638 (2011). https://doi.org/10.1557/jmr.2011.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.129

Navigation