Skip to main content
Log in

Novel growth mode of solid–liquid–solid (SLS) silica nanowires

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel and previously unreported, high temperature solid–liquid–solid (SLS) silica nanowire (NW) growth mode has been observed and investigated. In this mode, SLS NW nucleation and subsequent growth was uniquely promoted by—and coupled to—the formation of thermally etched pyramidal pits in the Si substrate that formed during a high temperature anneal phase before the onset of SLS NW formation. The silicon oxide-mediated thermal pit formation process enhanced Si transport to Au–Si alloy droplets directly adjacent to the pyramidal pits. Consequently, SLS NW nucleation and growth was preferentially promoted at the pit edges. The promotion of SLS NW growth by the pyramidal pits resulted in the observation of SLS NW “blooms” at the pit locations. Subsequent NW growth, occurring both at the pit sites and from Au–Si alloy droplets distributed across the planar surfaces of the Si wafer, eventually occluded the pits. This newly observed process is termed as “thermal pit-assisted growth.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. A.M. Morales and C.M. Lieber: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).

    Article  CAS  Google Scholar 

  2. W. Lu and C.M. Lieber: Nanoelectronics from the bottom up. Nat. Mater. 6, 841 (2007).

    Article  CAS  Google Scholar 

  3. A. Colli, A. Fasoli, P. Beecher, P. Servati, S. Pisana, Y. Fu, A.J. Flewitt, W.I. Milne, J. Robertson, C. Ducati, S. De Franceschi, S. Hofmann, and A.C. Ferrari: Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. J. Appl. Phys. 102, 034302 (2007).

    Article  Google Scholar 

  4. Y. Wu, J. Xiang, C. Yang, W. Lu, and C.M. Lieber: Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature 430, 61 (2004).

    Article  CAS  Google Scholar 

  5. Y.F. Zhang, Y.H. Tang, N. Wang, D.P. Yu, C.S. Lee, I. Bello, and S.T. Lee: Silicon nanowires prepared by laser ablation at high temperature. Appl. Phys. Lett. 721, 835 (1998).

    Google Scholar 

  6. N.D. Zakharov, P. Werner, G. Gerth, L. Schubert, L. Sokolov, and U. Gösele: Growth phenomena of Si and Si/Ge nanowires on Si (111) by molecular beam epitaxy. J. Cryst. Growth 290, 6 (2006).

    Article  CAS  Google Scholar 

  7. D.P. Yu, Z.G. Bai, Y. Ding, Q.L. Hang, H.Z. Zhang, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, H.T. Zhou, and S.Q. Feng: Nanoscale silicon wires synthesized using simple physical evaporation. Appl. Phys. Lett. 72, 3458 (1998).

    Article  CAS  Google Scholar 

  8. J. Westwater, D.P. Gosain, S. Tomiya, S. Usui, and H. Ruda: Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J. Vac. Sci. Technol., B 15, 554 (1997).

    Article  CAS  Google Scholar 

  9. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, and C.M. Lieber: Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214 (2001).

    Article  CAS  Google Scholar 

  10. A.I. Hochbaum, R. Fan, R. He, and P. Yang: Controlled growth of Si nanowire arrays for device integration. Nano Lett. 5, 457 (2005).

    Article  CAS  Google Scholar 

  11. M. Paulose, O.K. Varghese, and C.A. Grimes: Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth. J. Nanosci. Nanotechnol. 3, 341 (2003).

    Article  CAS  Google Scholar 

  12. H.F. Yan, Y.J. Xing, Q.L. Hang, D.P. Yu, Y.P. Wang, J. Xu, Z.H. Xi, and S.Q. Feng: Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism. Chem. Phys. Lett. 323, 224 (2000).

    Article  CAS  Google Scholar 

  13. R.S. Wagner and W.C. Ellis: Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964).

    Article  CAS  Google Scholar 

  14. E.I. Givargizov: Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20 (1975).

    Article  CAS  Google Scholar 

  15. R.Q. Zhang, Y. Lifshitz, and S.T. Lee: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15, 635 (2003).

    Article  CAS  Google Scholar 

  16. R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, and S.T. Lee: Mechanism of oxide-assisted nucleation and growth of silicon nanostructures. Mater. Sci. Eng., C 16, 31 (2001).

    Article  Google Scholar 

  17. R.Q. Zhang, T.S. Chu, H.F. Cheung, N. Wang, and S.T. Lee: High reactivity of silicon suboxide clusters. Phys. Rev. B 64, 113304 (2001).

    Article  Google Scholar 

  18. J.H. Lee, P.H. Rogers, M.A. Carpenter, E.T. Eisenbraun, Y. Xue, and R.E. Geer: Synthesis and properties of templated Si-based nanowires for electrical transport, in Proceedings of Eighth IEEE Conference on Nanotechnology, IEEE NANO’ 08, Arlington, TX, 2008, p. 584.

    Google Scholar 

  19. P.K. Sekhar, N.S. Ramgir, R.K. Joshi, and S. Bhansali: Selective growth of silica nanowires using an Au catalyst for optical recognition of interleukin-10. Nanotechnology 19, 245502 (2008).

    Article  Google Scholar 

  20. J.H. Kim, H.H. An, H.J. Woo, and C.S. Yoon: The growth mechanism for silicon oxide nanowires synthesized from an Au nanoparticle/polyimide/Si thin film stack. Nanotechnology 19, 125604 (2008).

    Article  CAS  Google Scholar 

  21. K. Ueda and M. Yoshimura: Formation of micromeshes by nickel silicide. Thin Solid Films 464, 208 (2004).

    Article  Google Scholar 

  22. C.-C. Chang and P. Shen: Thermal-etching development of α-Zn2SiO4 polycrystals: Effects of lattice imperfections, Mn-dopant and capillary force. Mater. Sci. Eng., A 288, 42 (2000).

    Article  Google Scholar 

  23. A. Reisman, S.T. Edwards, and P.L. Smith: On the thermal etching of silicon. J. Electrochem. Soc. 135, 2848 (1988).

    Article  CAS  Google Scholar 

  24. A. Reisman, D. Temple, and P.L. Smith: Further comments on the thermal etching of silicon: The surface morphology of (100), (111) and (110) wafers in the temperature range 900°-1150°C. J. Electrochem. Soc. 137, 284 (1990).

    Article  CAS  Google Scholar 

  25. G.R. Yazdi, M. Syvajarvi, and R. Yakimova: Formation of needle-like and columnar structures of AlN. J. Cryst. Growth 300, 130 (2007).

    Article  CAS  Google Scholar 

  26. M. Futagami and M. Hamazaki: Thermal etching of a (100) silicon surface. Jpn. J. Appl. Phys. 21, 1782 (1982).

    Article  CAS  Google Scholar 

  27. C.Y. Wang, L.H. Chan, D.Q. Xiao, T.C. Lin, and H.C. Shiha: Mechanism of solid-liquid-solid on the silicon oxide nanowire growth. J. Vac. Sci. Technol., B 24, 613 (2006).

    Article  CAS  Google Scholar 

  28. J.L. Elechiguerra, J.A. Manriquez, and M.J. Yacaman: Growth of amorphous SiO2 nanowires on Si using a Pd/Au thin film as a catalyst. Appl. Phys. A Mater. Sci. Process. 79, 461 (2004).

    Article  CAS  Google Scholar 

  29. G.W. Rubloff, R.M. Tromp, E.J. van Loenen, P. Balk, and F.K. LeGoues: Summary Abstract: High temperature decomposition of SiO2 at the Si/SiO2 interface. J. Vac. Sci. Technol., A 4, 1024 (1986).

    Article  Google Scholar 

  30. R. Tromp, G.W. Rubloff, P. Balk, and F.K. LeGoues: High-temperature SiO2 decomposition at the SiO2/Si interface. Phys. Rev. Lett. 55, 2332 (1985).

    Article  CAS  Google Scholar 

  31. T. Suzuki: Effect of annealing a silicon wafer in argon with a very low oxygen partial pressure. J. Appl. Phys. 88, 6881 (2000).

    Article  CAS  Google Scholar 

  32. T. Suzuki: Relation between the suppression of the generation of stacking faults and the mechanism of silicon oxidation during annealing under argon containing oxygen. J. Appl. Phys. 88, 1141 (2000).

    Article  CAS  Google Scholar 

  33. T. Suzuki: Oxygen partial pressure dependence of suppressing oxidation-induced stacking fault generation in argon ambient annealing including oxygen and HCl. Appl. Surf. Sci. 180, 168 (2001).

    Article  CAS  Google Scholar 

  34. C.C. Surdu-Boba, J.L. Sullivana, S.O. Saieda, R. Layberrya, and M. Aflorib: Surface compositional changes in GaAs subjected to argon plasma treatment. Appl. Surf. Sci. 202, 183 (2002).

    Article  Google Scholar 

  35. Z.W. Pan, Z.R. Dai, C. Ma, and Z.L. Wang: Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires. J. Am. Chem. Soc. 124, 1817 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the SRC (Semiconductor Research Corporation)/DARPA (Defense Advanced Research Projects Agency) Focus Center Research Program and the New York State Office of Science, Technology and Research for their support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert E. Geer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.H., Carpenter, M.A. & Geer, R.E. Novel growth mode of solid–liquid–solid (SLS) silica nanowires. Journal of Materials Research 26, 2232–2239 (2011). https://doi.org/10.1557/jmr.2011.119

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.119

Navigation