Skip to main content

Advertisement

Log in

Atomistic study of the competitive relationship between edge dislocation motion and hydrogen diffusion in alpha iron

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The interaction between a dislocation and hydrogen is considered to play an important role in hydrogen-related fractures for metals; it has been experimentally reported that hydrogen affects the dislocation mobility. These studies, however, show different macroscopic softening and/or hardening effects in iron, and the interaction between the dislocation and hydrogen remains unclear. In this study, we investigated the occurrence of interactions between a {112}<111> edge dislocation and a hydrogen atom via the estimation of the stress-dependent energy barriers for the dislocation motion and hydrogen diffusion in alpha iron using atomistic calculations. Our results show the existence of boundary stress conditions: dislocation mobility increment (softening) occurs at a lower applied stress, dislocation mobility decrement (hardening) occurs at an intermediate stress, and no effects occur for the steady motion of a dislocation at a higher stress in this analysis condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.

Similar content being viewed by others

REFERENCES

  1. R.P. Frohmberg, W.J. Barnett, and A.R. Troiano: Delayed failure and hydrogen embrittlement in steel. Trans. ASM 47, 892 (1955).

    Google Scholar 

  2. R.A. Oriani and H. Josephic: Equilibrium aspects of hydrogen-induced cracking of steels. Acta Metall. 22, 1065 (1974).

    Article  CAS  Google Scholar 

  3. R.A. Oriani and H. Josephic: Equilibrium and kinetic studies of the hydrogen-assisted cracking of steel. Acta Metall. 25, 979 (1977).

    Article  CAS  Google Scholar 

  4. C.D. Beachem: A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metall. Trans. 3A, 437 (1972).

    Google Scholar 

  5. H.K. Birnbaum and P. Sofronis: Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191 (1994).

    Article  CAS  Google Scholar 

  6. P. Sofronis and H.K. Birnbaum: Mechanics of the hydrogen-dislocation-impurity interactions: Part I increasing shear modulus. J. Mech. Phys. Solids 43, 49 (1995).

    Article  Google Scholar 

  7. M. Nagumo, M. Nakamura, and K. Takai: Hydrogen thermal desorption relevant to delayed-fracture susceptibility of high-strength steel. Metall. Mater. Trans. A 32A, 339 (2001).

    Article  CAS  Google Scholar 

  8. K. Takai, H. Shoda, H. Suzuki, and M. Nagumo: Lattice defects dominationg hydrogen-related failure of metals. Acta Mater. 56, 5158 (2008).

    Article  CAS  Google Scholar 

  9. S.P. Lynch: Environmentally assisted cracking overview of evidence for an adsorption-induced localised-slip process. Acta Metall. 36, 2639 (1988).

    Article  CAS  Google Scholar 

  10. Y. Murakami and H. Matsunaga: The effect of hydrogen on fatigue properties of steels used for fuel cell system. Int. J. Fatigue 28, 1509 (2006).

    Article  CAS  Google Scholar 

  11. Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka: Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall. Mater. Trans. A 39A, 1327 (2008).

    Article  CAS  Google Scholar 

  12. S.M. Myers, M.I. Baskes, H.K. Birnbaum, J.W. Corbett, G.G. Deleo, S.K. Estreicher, E.E. Haller, P. Jena, N.M. Johnson, R. Kirchheim, S.J. Pearton, and M.J. Stavola: Hydrogen interactions with defects in crystalline solids. Rev. Mod. Phys. 64, 559 (1992).

    Article  CAS  Google Scholar 

  13. G. Han, J. He, S. Fukuyama, and K. Yokogawa: Effect of strain-induced martensite on hydrogen environment embrittlement of sensitized austenitic stainless steels at low temperatures. Acta Mater. 46, 4559 (1998).

    Article  CAS  Google Scholar 

  14. M. Nagumo: Fundamentals of Hydrogen Embrittlement (Uchida Rokakuho, Japan, 2008) p. 167. (in Japanese).

    Google Scholar 

  15. S. Taketomi, R. Matsumoto, and N. Miyazaki: Atomistic simulation of the effects of hydrogen on the mobility of edge dislocation in alpha iron. J. Mater. Sci. 43, 1166 (2008).

    Article  CAS  Google Scholar 

  16. A.H. Cottrell: Dislocations and Plastic Flow in Crystals (Oxford University Press, England, 1953) p. 136.

    Google Scholar 

  17. A.H. Cottrell, and B.A. Bilby: Dislocation theory of yielding and strain ageing of iron. Proc. Phys. Soc. Sec. A 62, 49 (2949).

  18. K. Tapasa, Y.N. Osetsky, and D.J. Bacon: Computer simulation of interaction of an edge dislocation with a carbon interstitial in alpha-iron and dffects on glide. Acta Mater. 55, 93 (2007).

    Article  CAS  Google Scholar 

  19. S.Y. Hu, Y.L. Li, Y.X. Zheng, and L.Q. Chen: Effect of solutes on dislocation motion -a phase- field simulation. Int. J. Plast. 20, 403 (2004).

    Article  Google Scholar 

  20. S.Y. Hu, J. Choi, Y.L. Li, and L.Q. Chen: Dynamic drag of solute atmosphere on moving edge dislocations-phase-field simulation. J. Appl. Phys. 96, 229 (2004).

    Article  CAS  Google Scholar 

  21. Z.J. Chen, Q.C. Zhang, and X.P. Wu: Dynamic interaction between dislocation and diffusing solutes. Europhys. Lett. 71, 235 (2005).

    Article  CAS  Google Scholar 

  22. J.M. Rickman, R. LeSar, and D.J. Srolovitz: Solute effects on dislocation glide in metals. Acta Mater. 51, 1199 (2003).

    Article  CAS  Google Scholar 

  23. W.A. Curtin, D.L. Olmsted, and L.G. Hector Jr.: A predictive mechanism for dynamic strain ageing in aluminum-magnesium alloys. Nat. Mater. 5, 875 (2006).

    Article  CAS  Google Scholar 

  24. D.L. Olmsted, L.G. Hector Jr., and W.A. Curtin: Molecular dynamics study of solute strengthening in Al/Mg alloys. J. Mech. Phys. Solids 54, 1763 (2006).

    Article  CAS  Google Scholar 

  25. Y. Wang, D.J. Srolovitz, J.M. Rickman, and R. LeSar: Dislocation motion in the presence of diffusing solutes: A computer simulation study. Acta Mater. 48, 2163 (2000).

    Article  CAS  Google Scholar 

  26. S. Taketomi, R. Matsumoto, and N. Miyazaki: Atomistic study of hydrogen distribution and diffusion around a {112}<111> edge dislocation in alpha iron. Acta Mater. 56, 3761 (2008).

    Article  CAS  Google Scholar 

  27. T. Zhu, J. Li, A. Samanta, A. Leach, and K. Gall: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 025502 (2008).

    Article  CAS  Google Scholar 

  28. M. Wen, B. An, S. Fukuyama, K. Yokogawa, and A.H.M. Ngan: Thermally activated model for tensile yielding of pristine single-walled carbon nanotubes with nonlinear elastic deformation. Carbon 47, 2070 (2009).

    Article  CAS  Google Scholar 

  29. D.H. Warner and W.A. Curtin: Origins and implications of temperature dependent activation energy barriers for dislocation nucleation in fcc metals. Acta Mater. 57, 4267 (2009).

    Article  CAS  Google Scholar 

  30. G. Henkelman and H. Jónsson: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978 (2000).

    Article  CAS  Google Scholar 

  31. H. Jónsson, G. Mills, and K.W. Jacobsen: Nudged elastic band method for finding minimum energy paths of transitions, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B.J. Berne, G. Ciccotti, and D.F. Coker (World Scientific, Singapore, 1998), p. 385.

    Chapter  Google Scholar 

  32. M. Wen, X.J. Xu, S. Fukuyama, and K. Yokogawa: Embedded-atom-method functions for the body-centered-cubic iron and hydrogen. J. Mater. Res. 16, 3496 (2001).

    Article  CAS  Google Scholar 

  33. M. Wen, S. Fukuyama, and K. Yokogawa: Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Mater. 51, 1767 (2003).

    Article  CAS  Google Scholar 

  34. S. Nedelcu and P. Kizler: Molecular dynamics simulation of hydrogen-edge dislocation interaction in bcc iron. Phys. Status Solidi A 193, 26 (2002).

    Article  CAS  Google Scholar 

  35. J.P. Hirth: Effects of hydrogen on the properties of iron and steel. Metall. Trans. A 11A, 861 (1980).

    Article  CAS  Google Scholar 

  36. R. Matsumoto, Y. Inoue, S. Taketomi, and N. Miyazaki: Influence of shear strain on the hydrogen trapped in bcc-Fe: A first-principles-based study. Scr. Mater. 60, 555 (2009).

    Article  CAS  Google Scholar 

  37. R.A. Oriani: The diffusion and trapping of hydrogen in steel. Acta Metall. 18, 147 (1970).

    Article  CAS  Google Scholar 

  38. J.P. Hirth and J. Lothe: Theory of dislocations, 2nd ed. (Krieger Publishing Company, 1982), p. 541.

    Google Scholar 

  39. National Astronomical Observatory: Chronological Science Tables (Maruzen Co., Ltd., Japan, 2003) (in Japanese).

    Google Scholar 

  40. T. Yokobori: Zairyo-Kyodo-Gaku (Gihodo Press, 1955) p. 14. (in Japanese).

    Google Scholar 

  41. J.D. Honeycutt and H.C. Andersen: Molecular dynamics study of melting and freezing of small lennard-jones clusters. J. Phys. Chem. 91, 4950 (1987).

    Article  CAS  Google Scholar 

  42. Y. Takahashi, M. Tanaka, K. Higashida, and H. Noguchi: Hydrogen-induced slip localization around a quasi-brittle fatigue crack observed by high-voltage electron microscopy. Scr. Mater. 61, 145 (2009).

    Article  CAS  Google Scholar 

  43. Y. Takahashi, M. Tanaka, K. Higashida, K. Yamaguchi, and H. Noguchi: An intrinsic effect of hydrogen on cyclic slip deformation around a {110} fatigue crack in Fe-3.2 wt% Si alloy. Acta Mater. 58, 1972 (2010).

    Article  CAS  Google Scholar 

  44. Y. Takahashi, J. Sakamoto, M. Tanaka, K. Higashida, and H. Noguchi: TEM observation of cyclic deformation around an oblique fatigue crack tip in single-crystalline Fe-3.2 wt% Si alloy. Trans. Japan Soc. Mech. Eng. A. 76, 251 (2010) (in Japanese).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This research was partially supported by the Fundamental Research Project on Advanced Hydrogen Science funded by the New Energy Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Taketomi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taketomi, S., Matsumoto, R. & Miyazaki, N. Atomistic study of the competitive relationship between edge dislocation motion and hydrogen diffusion in alpha iron. Journal of Materials Research 26, 1269–1278 (2011). https://doi.org/10.1557/jmr.2011.106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.106

Navigation