Skip to main content
Log in

Catalytic graphitization of three-dimensional wood-derived porous scaffolds

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A catalytic technique to enhance graphite formation in nongraphitizing carbons was adapted to work with three-dimensional wood-derived scaffolds. Unlike many synthetic graphite precursors, wood and other cellulosic carbons remain largely disordered after high temperature pyrolysis. Using a nickel nitrate liquid catalyst and controlled pyrolysis conditions, wood-derived scaffolds were produced showing similar graphitic content to traditional pitch-based graphite while retaining the high-aspect ratio pores of the precursor wood micro structure. Graphite formation was studied as a function of processing time and pyrolysis temperature, and the resulting carbons were analyzed using x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, and electron microscopy techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Greil, T. Lifka, and A. Kaindl: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18(14), 1961 (1998).

    Article  CAS  Google Scholar 

  2. P. Greil: Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 21(2), 105 (2001).

    Article  CAS  Google Scholar 

  3. V.S. Kaul, K.T. Faber, R. Sepulveda, A.R. de Arellano Lopez, and J. Martinez-Fernandez: Precursor selection and its role in the mechanical properties of porous SiC derived from wood. Mater. Set Eng., A 428(1–2), 225 (2006).

    Article  Google Scholar 

  4. K.E. Pappacena, K.T. Faber, H. Wang, and W.D. Porter: Thermal conductivity of porous silicon carbide derived from wood precursors. J. Am. Ceram. Soc. 90(9), 2855 (2007).

    Article  CAS  Google Scholar 

  5. P. Greil, T. Lifka, and A. Kaindl: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J. Eur. Ceram. Soc. 18(14), 1975 (1998).

    Article  CAS  Google Scholar 

  6. H. Sieber, C. Hoffmann, A. Kaindl, and P. Greil: Biomorphic cellular ceramics. Adv. Eng. Mater. 2(3), 105 (2000).

    Article  CAS  Google Scholar 

  7. F.M. Varela-Feria, J. Martinez-Fernandez, A.R. de Arellano-Lopez, and M. Singh: Low density biomorphic silicon carbide: Micro-structure and mechanical properties. J. Eur. Ceram. Soc. 22(14–15), 2719 (2002).

    Article  CAS  Google Scholar 

  8. J.M. Qian, J.P. Wang, and Z.H. Jin: Preparation of biomorphic SiC ceramic by carbothermal reduction of oak wood charcoal. Mater. Set Eng., A 371(1–2), 229 (2004).

    Article  Google Scholar 

  9. K.E. Pappacena, M.T. Johnson, S. Xie, and K.T. Faber: Processing of wood-derived copper-silicon carbide composites via electrode-position. Compos. Set Technol. 70(3), 485 (2010).

    Article  CAS  Google Scholar 

  10. K.E. Pappacena, M.T. Johnson, H. Wang, W.D. Porter, and K.T. Faber: Thermal properties of wood-derived copper-silicon carbide composites fabricated via electrodeposition. Compos. Sci. Technol. 70(3), 478 (2010).

    Article  CAS  Google Scholar 

  11. J. Klett, R. Hardy, E. Romine, C. Walls, and T. Burchell: High-thermal-conductivity, mesophase-pitch-derived carbon foams: Effect of precursor on structure and properties. Carbon 38(7), 953 (2000).

    Article  CAS  Google Scholar 

  12. D. Gaies and K.T. Faber: Thermal properties of pitch-derived graphite foam. Carbon 40(7), 1137 (2002).

    Article  CAS  Google Scholar 

  13. C. Zweben: Advances in composite materials for thermal management in electronic packaging. JOM 50(6), 47 (1998).

    Article  CAS  Google Scholar 

  14. R.E. Franklin: The structure of graphitic carbons. Acta Crystallogr. 4(5), 235(1951).

    Google Scholar 

  15. C.E. Byrne and D.C. Nagle: Carbonized wood monoliths—Characterization. Carbon 35(2), 267 (1997).

    Article  CAS  Google Scholar 

  16. H.M. Cheng, H. Endo, T. Okabe, K Saito, and G.B. Zheng: Graphitization behavior of wood ceramics and bamboo ceramics as determined by x-ray diffraction. J. Porous Mater. 6(3), 233 (1999).

    Article  CAS  Google Scholar 

  17. A. Oya and H. Marsh: Phenomena of catalytic graphitization. J. Mater. Sci. 17(2), 309 (1982).

    Article  CAS  Google Scholar 

  18. K. Ishimaru, T. Hata, P. Bronsveld, and Y. Imamura: Microstruc-tural study of carbonized wood after cell wall sectioning. J. Mater. Sci. 42(8), 2662 (2007).

    Article  CAS  Google Scholar 

  19. R. Sinclair, T. Itoh, and R. Chin: In situ TEM studies of metal-carbon reactions. Microsc. Microanal. 8(4), 288 (2002).

    Article  CAS  Google Scholar 

  20. M. Sevilla, C. Sanchis, T. Valdes-Solis, E. Morallon, and A.B. Fuertes: Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports. J. Phys. Chem. C 111(27), 9749 (2007).

    Article  CAS  Google Scholar 

  21. F.J. Derbyshire, A.E.B. Presland, and D.L. Trimm: Graphite formation by dissolution-precipitation of carbon in cobalt, nickel and iron. Carbon 13(2), 111 (1975).

    Article  CAS  Google Scholar 

  22. C. Yokokawa, K. Hosokawa, and Y. Takegami: A kinetic study of catalytic graphitization of hard carbon. Carbon 5(5), 475 (1967).

    Article  CAS  Google Scholar 

  23. D.B. Fischbach: The Kinetics and Mechanism of Graphitization, edited by P.L. Walker Jr. (Marcel Dekker, Inc., New York, 1971).

  24. F.J. Maldonado-Hodar, C. Moreno-Castilla, J. Rivera-Utrilla, Y. Hanzawa, and Y. Yamada: Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16(9), 4367 (2000).

    Article  CAS  Google Scholar 

  25. ASTM C373: Standard test method for water absorption, bulk density, apparent porosity, and apparent specific gravity of fired whiteware products. (ASTM International, West Conshohocken, Pennsylvania, 2006).

    Google Scholar 

  26. J. Diaz, G. Paolicelli, S. Ferrer, and F. Comin: Separation of the sp3 and sp components in the CI s photoemission spectra of amorphous carbon films. Phys. Rev. B 54(11), 8064 (1996).

    Article  CAS  Google Scholar 

  27. J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, and K.R. Hallam: XPS and laser Raman analysis of hydrogenated amorphous carbon films. Diamond Relat. Mater. 12, 974 (2003).

    Article  CAS  Google Scholar 

  28. J. Klett: Process for making carbon foam. U.S. Patent No. 6033506 (2000).

    Google Scholar 

  29. K.E. Pappacena, S.P. Gentry, T.E. Wilkes, M.T. Johnson, S. Xie, A. Davis, and K.T. Faber: Effect of pyrolyzation temperature on wood-derived carbon and silicon carbide. J. Eur. Ceram. Soc. 29 (14), 3069 (2009).

    Article  CAS  Google Scholar 

  30. F. Tunistra and J.L. Koenig: Raman spectrum of graphite. J. Chem. Phys. 53(3), 1126(1970).

    Article  Google Scholar 

  31. A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, and U. Poschl: Raman micro spectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 43(8), 1731 (2005).

    Article  CAS  Google Scholar 

  32. J.M. Dinwoodie: Wood: Nature’s Cellular, Polymeric, Fibre-Composite (Institute of Metals, London, 1989).

    Google Scholar 

  33. W.F. Smith: Structure and Properties of Engineering Alloys, 2nd ed. (McGraw-Hill, New York, 1993).

    Google Scholar 

  34. A.A. El-Barbary, S. Trasobares, C.P. Ewels, O. Stephan, A.V. Okotrub, L.G. Bulusheva, C.J. Fall, and M.I. Heggie: Electron spectroscopy of carbon materials: Experiment and theory. J. Phys. Conf. Ser. 26(1), 149 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Science Foundation (DMR-0710630). The SEM, TEM, and Raman spectroscopy work was performed in the EPIC and Keck-II facilities of NUANCE Center at Northwestern University. NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, the Keck Foundation, the State of Illinois, and Northwestern University. This work made use of the J.B. Cohen X-ray Diffraction Facility supported by the MRSEC program of the National Science Foundation (DMR-0520513) at the Materials Research Center of Northwestern University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. T. Faber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, M.T., Faber, K.T. Catalytic graphitization of three-dimensional wood-derived porous scaffolds. Journal of Materials Research 26, 18–25 (2011). https://doi.org/10.1557/jmr.2010.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.88

Navigation