Abstract
Impedance spectroscopy studies were conducted on amorphous tantalum oxide thin films prepared using pulsed-DC reactive sputtering, which were post-annealed to crystallize the films. X-ray diffraction results showed that crystallization to Ta2O5 β phase occurs for samples annealed above 650 °C, with a crystallite size of ∼40 nm. The film microstructure was studied by electron microscopy, and remnants of the columnar amorphous microstructure were found in the polycrystalline films. Complex impedance analyses revealed significant differences in dielectric behavior between the amorphous and crystalline films. Lumped circuit models were conducted on the films using resistors, capacitors, and constant phase elements. Amorphous films exhibited a single relaxation with Arrhenius activation energy of 1.1–1.3 eV. Crystallized films exhibited two relaxations with activation energies equal to 1.1 ± 0.08 and 0.6 ± 0.03 eV. The relative permittivity of the bulk crystalline grain in tantalum oxide films is close to the established permittivity of the β phase (εr = 40) of Ta2O5.
Similar content being viewed by others
References
E. Atanassova and A. Paskaleva: Challenges of Ta2O5 as high-k dielectric for nanoscale DRAMs. Microelectron. Reliab. 47, 913 (2007).
K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä: Properties of Ta2O5-based dielectric nanolaminates deposited by atomic layer epitaxy. J. Electrochem. Soc. 144, 300 (1997).
D. Spassov and E. Atanassova: Conduction mechanisms in Ta2O5 stack in response to rapid thermal annealing. Microelectron. Eng. 85, 214 (2008).
C.W. Wang, R.D. Lin, S.F. Chen, and W.K. Lin: Effects of O2 rapid thermal annealing on the microstructural properties and reliability of RF-sputtered Ta2O5 films. IEEE Trans. Dielectr. Electr. Insul. 7, 316 (2000).
S. Ezhilvalavan and T.Y. Tseng: Electrical properties of Ta2O5 thin films deposited on Cu. Thin Solid Films 360, 268 (2000).
S. Ezhilvalavan and T.Y. Tseng: Electrical properties of Ta2O5 thin films deposited on Ta. Appl. Phys. Lett. 74, 2477 (1999).
T. Dimitrova, K. Arshak, and E. Atanassova: Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films 381, 31 (2001).
S. Ezhilvalavan and T.Y. Tseng: Conduction mechanisms in amorphous and crystalline Ta2O5 thin films. J. Appl. Phys. 83, 4797 (1998).
K. Chen, M. Nielsen, E. Rymaszewski, and T. Lu: Study of electron trapping in the amorphous tantalum oxide thin films prepared by DC magnetron reactive sputtering. Mater. Chem. Phys. 49, 42 (1997).
O. Kerrec, D. Devilliers, H. Groult, and P. Marcus: Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS. Mater. Sci. Eng. B 55, 134 (1998).
E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, and K. Kostov: XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Appl. Surf. Sci. 225, 86 (2004).
S. Ezhilvalavan and T.Y. Tseng: Short-duration rapid thermal annealing processing of tantalum oxide thin films. J. Am. Ceram. Soc. 82, 600 (1999).
A. Pignolet, G. Mohan Rao, and S.B. Krupanidhi: Rapid thermal processed thin films of reactively sputtered Ta2O5. Thin Solid Films 258, 230 (1995).
W. Andreoni and C.A. Pignedoli: Ta2O5 polymorphs: Structural motifs and dielectric constant from first principles. Appl. Phys. Lett. 96, 062901 (2010).
C. Chaneliere, J.L. Autran, R.A.B. Devine, and B. Balland: Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R 22, 269 (1998).
S. Shibata: Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films 277, 1 (1996).
A.S. Pavlovic: Some dielectric properties of tantalum pentoxide. J. Chem. Phys. 40, 951 (1964).
B. Verkerk, P. Winkel, and D.G. de Groot: On the mechanism of anodic oxidation of tantalum. Philips Res. Rep. 13, 506 (1958).
H. Kimura, J. Mizuki, S. Kamiyama, and H. Suzuki: Extended x-ray absorption fine structure analysis of the difference in local structure of tantalum oxide capacitor films produced by various annealing methods. Appl. Phys. Lett. 66, 2209 (1995).
W.S. Lau and L.L. Leong, T. Han, and N.P. Sandler: Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy. Appl. Phys. Lett. 83, 2835 (2003).
I.I. Kim, S.-D. Ahn, B.-W. Cho, S.-T. Ahn, J.Y. Lee, J.S. Chun, and W.-J. Lee: Microstructure and electrical properties of tantalum oxide thin film prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 33, 6691 (1994).
S.R. Jeon, S.W. Han, and J.W. Park: Effect of rapid thermal annealing treatment on electrical properties and microstructure of tantalum oxide thin film deposited by plasma enhanced chemical vapor deposition. J. Appl. Phys. 77, 5978 (2009).
M.M. Lohrengel: Thin anodic oxide layers on aluminium and other valve metals: High field regime. Mater. Sci. Eng. R 11, 243 (1993).
J.S.L. Leach and B.R. Pearson: Crystallization in anodic oxide films. Corros. Sci. 28, 43 (1988).
T. Ohishi, S. Maekawa, and A. Katoh: Synthesis and properties of tantalum oxide films prepared by the sol-gel method using photo-irradiation. J. Non-Cryst. Solids 147–, 493 (1992).
G. Sethi, P. Sunal, M.W. Horn, and M.T. Lanagan: Influence of reactive sputter deposition conditions on crystallization of zirconium oxide thin films. J. Vac. Sci. Technol. A 27, 577 (2009).
B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).
P. Beckage, D. Knorr, X. Wu, T. Lu, and E. Rymaszewski: Discrete β-Ta2O5 crystallite formation in reactively sputtered amorphous thin films. J. Mater. Sci. 33, 4375 (1998).
G.S. Bales and A. Zangwill: Macroscopic model for columnar growth of amorphous films by sputter deposition. J. Vac. Sci. Technol. A 9, 145 (1991).
J.A. Thornton: Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666 (1974).
G. Sethi, M. Olszta, J. Li, J. Sloppy, M.W. Horn, E.C. Dickey, and M.T. Lanagan: Structure and dielectric properties of amorphous tantalum pentoxide thin film capacitors, in Proceedings of. 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2007, pp. 815–818.
M.M.J. Treacy and J.M. Gibson: Variable coherence microscopy: A rich source of structural information from disordered materials. Acta Crystallogr. A 52, 212 (1996).
J.M. Gibson, M.M.J. Treacy, and P.M. Voyles: Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83, 169 (2000).
P.M. Voyles, M.M.J. Treacy, and J.M. Gibson: Fluctuation microscopy: A probe of atomic correlations in disordered materials. J. Electron Microsc. (Tokyo) 49, 259 (2000).
C.J.F. Bottcher and P. Bordewijk: Theory of Electric Polarization: Dielectric in Time-Dependent Fields, Vol. II. (Elsevier, Amsterdam, 1992).
A.K. Jonscher: The ‘universal’ dielectric response. Nature 267, 673 (1977).
T.R.N. Kutty and S. Ezhilvalavan: The role of silica in enhancing the nonlinearity coefficients by modifying the trap states of zinc oxide ceramic varistors. J. Phys. D Appl. Phys. 29, 809 (1996).
I. Jõgi: Conduction Mechanisms in Thin Atomic Layer Deposited Films Containing TiO2 (University of Tartu, Estonia, 2007).
R. Ramprasad: First principles study of oxygen vacancy defects in tantalum pentoxide. J. Appl. Phys. 94, 5609 (2003).
L. Saraf, C.M. Wang, V. Shutthanandan, Y. Zhang, O. Marina, D.R. Baer, S. Thevuthasan, P. Nachimuthu, and D.W. Lindle: Oxygen transport studies in nanocrystalline ceria films. J. Mater. Res. 20, 1295 (2005).
G.Y. Yang, G.D. Lian, E.C. Dickey, C.A. Randall, D.E. Barber, P. Pinceloup, M.A. Henderson, R.A. Hill, J.J. Beeson, and D.J. Skamser: Oxygen nonstoichiometry and dielectric evolution of BaTiO3. II: Insulation resistance degradation under applied dc bias. J. Appl. Phys. 96, 7500 (2004).
M.J. Duggan, T. Saito, and T. Niwa: Ionic conductivity of tantalum oxide by RF sputtering. Solid State Ion 62, 15 (1993).
E.J. Abram, D.C. Sinclair, and A.R. West: A strategy for analysis and modeling of impedance spectroscopy data of electroceramics: Doped lanthanum gallate. J. Electroceram. 10, 165 (2003).
A.K. Jonscher: Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).
F.D. Morrison, D.J. Jung, and J.F. Scott: Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors. J. Appl. Phys. 101, 094112 (2007).
A.E. McHale and H.L. Filler: Defects and charge transport in β-Ta2O5: Analysis of the conductivity observed in nominally pure β-Ta2O5. J. Am. Ceram. Soc. 68, 646 (2006).
A. Kyritsis, P. Pissi, and I. Grammatikakis: Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. B: Polym. Phys. 33, 1737 (1995).
R.D. Shannon: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).
ACKNOWLEDGMENTS
This research was conducted under MURI grant from Office of Naval Research under the contract number N000140510541. The authors thank Dr. Matthew Olszta for his help with the TEM analysis, Jennifer Sloppy and Elizabeth Dickey for their discussions on tantalum anodization, and Sean Pursel for his help with SEM analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sethi, G., Bontempo, B., Furman, E. et al. Impedance analysis of amorphous and polycrystalline tantalum oxide sputtered films. Journal of Materials Research 26, 745–753 (2011). https://doi.org/10.1557/jmr.2010.77
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2010.77