Skip to main content

Advertisement

Log in

Impedance analysis of amorphous and polycrystalline tantalum oxide sputtered films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Impedance spectroscopy studies were conducted on amorphous tantalum oxide thin films prepared using pulsed-DC reactive sputtering, which were post-annealed to crystallize the films. X-ray diffraction results showed that crystallization to Ta2O5 β phase occurs for samples annealed above 650 °C, with a crystallite size of ∼40 nm. The film microstructure was studied by electron microscopy, and remnants of the columnar amorphous microstructure were found in the polycrystalline films. Complex impedance analyses revealed significant differences in dielectric behavior between the amorphous and crystalline films. Lumped circuit models were conducted on the films using resistors, capacitors, and constant phase elements. Amorphous films exhibited a single relaxation with Arrhenius activation energy of 1.1–1.3 eV. Crystallized films exhibited two relaxations with activation energies equal to 1.1 ± 0.08 and 0.6 ± 0.03 eV. The relative permittivity of the bulk crystalline grain in tantalum oxide films is close to the established permittivity of the β phase (εr = 40) of Ta2O5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
TABLE I.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
TABLE II.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. E. Atanassova and A. Paskaleva: Challenges of Ta2O5 as high-k dielectric for nanoscale DRAMs. Microelectron. Reliab. 47, 913 (2007).

    Article  CAS  Google Scholar 

  2. K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä: Properties of Ta2O5-based dielectric nanolaminates deposited by atomic layer epitaxy. J. Electrochem. Soc. 144, 300 (1997).

    Article  CAS  Google Scholar 

  3. D. Spassov and E. Atanassova: Conduction mechanisms in Ta2O5 stack in response to rapid thermal annealing. Microelectron. Eng. 85, 214 (2008).

    Article  CAS  Google Scholar 

  4. C.W. Wang, R.D. Lin, S.F. Chen, and W.K. Lin: Effects of O2 rapid thermal annealing on the microstructural properties and reliability of RF-sputtered Ta2O5 films. IEEE Trans. Dielectr. Electr. Insul. 7, 316 (2000).

    Article  CAS  Google Scholar 

  5. S. Ezhilvalavan and T.Y. Tseng: Electrical properties of Ta2O5 thin films deposited on Cu. Thin Solid Films 360, 268 (2000).

    Article  CAS  Google Scholar 

  6. S. Ezhilvalavan and T.Y. Tseng: Electrical properties of Ta2O5 thin films deposited on Ta. Appl. Phys. Lett. 74, 2477 (1999).

    Article  CAS  Google Scholar 

  7. T. Dimitrova, K. Arshak, and E. Atanassova: Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films 381, 31 (2001).

    Article  CAS  Google Scholar 

  8. S. Ezhilvalavan and T.Y. Tseng: Conduction mechanisms in amorphous and crystalline Ta2O5 thin films. J. Appl. Phys. 83, 4797 (1998).

    Article  CAS  Google Scholar 

  9. K. Chen, M. Nielsen, E. Rymaszewski, and T. Lu: Study of electron trapping in the amorphous tantalum oxide thin films prepared by DC magnetron reactive sputtering. Mater. Chem. Phys. 49, 42 (1997).

    Article  CAS  Google Scholar 

  10. O. Kerrec, D. Devilliers, H. Groult, and P. Marcus: Study of dry and electrogenerated Ta2O5 and Ta/Ta2O5/Pt structures by XPS. Mater. Sci. Eng. B 55, 134 (1998).

    Article  Google Scholar 

  11. E. Atanassova, G. Tyuliev, A. Paskaleva, D. Spassov, and K. Kostov: XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Appl. Surf. Sci. 225, 86 (2004).

    Article  CAS  Google Scholar 

  12. S. Ezhilvalavan and T.Y. Tseng: Short-duration rapid thermal annealing processing of tantalum oxide thin films. J. Am. Ceram. Soc. 82, 600 (1999).

    Article  CAS  Google Scholar 

  13. A. Pignolet, G. Mohan Rao, and S.B. Krupanidhi: Rapid thermal processed thin films of reactively sputtered Ta2O5. Thin Solid Films 258, 230 (1995).

    Article  CAS  Google Scholar 

  14. W. Andreoni and C.A. Pignedoli: Ta2O5 polymorphs: Structural motifs and dielectric constant from first principles. Appl. Phys. Lett. 96, 062901 (2010).

    Article  CAS  Google Scholar 

  15. C. Chaneliere, J.L. Autran, R.A.B. Devine, and B. Balland: Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R 22, 269 (1998).

    Article  Google Scholar 

  16. S. Shibata: Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films 277, 1 (1996).

    Article  CAS  Google Scholar 

  17. A.S. Pavlovic: Some dielectric properties of tantalum pentoxide. J. Chem. Phys. 40, 951 (1964).

    Article  CAS  Google Scholar 

  18. B. Verkerk, P. Winkel, and D.G. de Groot: On the mechanism of anodic oxidation of tantalum. Philips Res. Rep. 13, 506 (1958).

    CAS  Google Scholar 

  19. H. Kimura, J. Mizuki, S. Kamiyama, and H. Suzuki: Extended x-ray absorption fine structure analysis of the difference in local structure of tantalum oxide capacitor films produced by various annealing methods. Appl. Phys. Lett. 66, 2209 (1995).

    Article  CAS  Google Scholar 

  20. W.S. Lau and L.L. Leong, T. Han, and N.P. Sandler: Detection of oxygen vacancy defect states in capacitors with ultrathin Ta2O5 films by zero-bias thermally stimulated current spectroscopy. Appl. Phys. Lett. 83, 2835 (2003).

    Article  CAS  Google Scholar 

  21. I.I. Kim, S.-D. Ahn, B.-W. Cho, S.-T. Ahn, J.Y. Lee, J.S. Chun, and W.-J. Lee: Microstructure and electrical properties of tantalum oxide thin film prepared by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 33, 6691 (1994).

    Article  CAS  Google Scholar 

  22. S.R. Jeon, S.W. Han, and J.W. Park: Effect of rapid thermal annealing treatment on electrical properties and microstructure of tantalum oxide thin film deposited by plasma enhanced chemical vapor deposition. J. Appl. Phys. 77, 5978 (2009).

    Article  Google Scholar 

  23. M.M. Lohrengel: Thin anodic oxide layers on aluminium and other valve metals: High field regime. Mater. Sci. Eng. R 11, 243 (1993).

    Article  Google Scholar 

  24. J.S.L. Leach and B.R. Pearson: Crystallization in anodic oxide films. Corros. Sci. 28, 43 (1988).

    Article  CAS  Google Scholar 

  25. T. Ohishi, S. Maekawa, and A. Katoh: Synthesis and properties of tantalum oxide films prepared by the sol-gel method using photo-irradiation. J. Non-Cryst. Solids 147–, 493 (1992).

    Article  Google Scholar 

  26. G. Sethi, P. Sunal, M.W. Horn, and M.T. Lanagan: Influence of reactive sputter deposition conditions on crystallization of zirconium oxide thin films. J. Vac. Sci. Technol. A 27, 577 (2009).

    Article  CAS  Google Scholar 

  27. B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).

    Google Scholar 

  28. P. Beckage, D. Knorr, X. Wu, T. Lu, and E. Rymaszewski: Discrete β-Ta2O5 crystallite formation in reactively sputtered amorphous thin films. J. Mater. Sci. 33, 4375 (1998).

    Article  CAS  Google Scholar 

  29. G.S. Bales and A. Zangwill: Macroscopic model for columnar growth of amorphous films by sputter deposition. J. Vac. Sci. Technol. A 9, 145 (1991).

    Article  CAS  Google Scholar 

  30. J.A. Thornton: Influence of apparatus geometry and deposition conditions on structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666 (1974).

    Article  CAS  Google Scholar 

  31. G. Sethi, M. Olszta, J. Li, J. Sloppy, M.W. Horn, E.C. Dickey, and M.T. Lanagan: Structure and dielectric properties of amorphous tantalum pentoxide thin film capacitors, in Proceedings of. 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2007, pp. 815–818.

    Chapter  Google Scholar 

  32. M.M.J. Treacy and J.M. Gibson: Variable coherence microscopy: A rich source of structural information from disordered materials. Acta Crystallogr. A 52, 212 (1996).

    Article  Google Scholar 

  33. J.M. Gibson, M.M.J. Treacy, and P.M. Voyles: Atom pair persistence in disordered materials from fluctuation microscopy. Ultramicroscopy 83, 169 (2000).

    Article  CAS  Google Scholar 

  34. P.M. Voyles, M.M.J. Treacy, and J.M. Gibson: Fluctuation microscopy: A probe of atomic correlations in disordered materials. J. Electron Microsc. (Tokyo) 49, 259 (2000).

    Article  CAS  Google Scholar 

  35. C.J.F. Bottcher and P. Bordewijk: Theory of Electric Polarization: Dielectric in Time-Dependent Fields, Vol. II. (Elsevier, Amsterdam, 1992).

  36. A.K. Jonscher: The ‘universal’ dielectric response. Nature 267, 673 (1977).

    Article  CAS  Google Scholar 

  37. T.R.N. Kutty and S. Ezhilvalavan: The role of silica in enhancing the nonlinearity coefficients by modifying the trap states of zinc oxide ceramic varistors. J. Phys. D Appl. Phys. 29, 809 (1996).

    Article  CAS  Google Scholar 

  38. I. Jõgi: Conduction Mechanisms in Thin Atomic Layer Deposited Films Containing TiO2 (University of Tartu, Estonia, 2007).

    Google Scholar 

  39. R. Ramprasad: First principles study of oxygen vacancy defects in tantalum pentoxide. J. Appl. Phys. 94, 5609 (2003).

    Article  CAS  Google Scholar 

  40. L. Saraf, C.M. Wang, V. Shutthanandan, Y. Zhang, O. Marina, D.R. Baer, S. Thevuthasan, P. Nachimuthu, and D.W. Lindle: Oxygen transport studies in nanocrystalline ceria films. J. Mater. Res. 20, 1295 (2005).

    Article  CAS  Google Scholar 

  41. G.Y. Yang, G.D. Lian, E.C. Dickey, C.A. Randall, D.E. Barber, P. Pinceloup, M.A. Henderson, R.A. Hill, J.J. Beeson, and D.J. Skamser: Oxygen nonstoichiometry and dielectric evolution of BaTiO3. II: Insulation resistance degradation under applied dc bias. J. Appl. Phys. 96, 7500 (2004).

    Article  CAS  Google Scholar 

  42. M.J. Duggan, T. Saito, and T. Niwa: Ionic conductivity of tantalum oxide by RF sputtering. Solid State Ion 62, 15 (1993).

    Article  CAS  Google Scholar 

  43. E.J. Abram, D.C. Sinclair, and A.R. West: A strategy for analysis and modeling of impedance spectroscopy data of electroceramics: Doped lanthanum gallate. J. Electroceram. 10, 165 (2003).

    Article  CAS  Google Scholar 

  44. A.K. Jonscher: Dielectric Relaxation in Solids (Chelsea Dielectrics Press, London, 1983).

    Google Scholar 

  45. F.D. Morrison, D.J. Jung, and J.F. Scott: Constant-phase-element (CPE) modeling of ferroelectric random-access memory lead zirconate-titanate (PZT) capacitors. J. Appl. Phys. 101, 094112 (2007).

    Google Scholar 

  46. A.E. McHale and H.L. Filler: Defects and charge transport in β-Ta2O5: Analysis of the conductivity observed in nominally pure β-Ta2O5. J. Am. Ceram. Soc. 68, 646 (2006).

    Article  Google Scholar 

  47. A. Kyritsis, P. Pissi, and I. Grammatikakis: Dielectric relaxation spectroscopy in poly(hydroxyethyl acrylates)/water hydrogels. J. Polym. Sci. B: Polym. Phys. 33, 1737 (1995).

    Article  CAS  Google Scholar 

  48. R.D. Shannon: Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was conducted under MURI grant from Office of Naval Research under the contract number N000140510541. The authors thank Dr. Matthew Olszta for his help with the TEM analysis, Jennifer Sloppy and Elizabeth Dickey for their discussions on tantalum anodization, and Sean Pursel for his help with SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guneet Sethi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethi, G., Bontempo, B., Furman, E. et al. Impedance analysis of amorphous and polycrystalline tantalum oxide sputtered films. Journal of Materials Research 26, 745–753 (2011). https://doi.org/10.1557/jmr.2010.77

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.77

Navigation