Skip to main content
Log in

Continuous synthesis of multiwalled carbon nanotubes from xylene using the swirled floating catalyst chemical vapor deposition technique

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work reports the continuous and large-scale production of multiwalled carbon nanotubes (MWCNTs) from xylene/ferrocene in a swirled floating catalyst chemical vapor deposition reactor using argon as the carrier gas. The concentration of ferrocene used was 0.01 g/mL of xylene. In every run, 50-mL xylene gas was used together with xylene/ferrocene mixture injected into the reactor by means of a burette. The MWCNTs produced were characterized using the transmission electron microscopy (TEM) and Raman spectra. TEM analysis showed a poor production rate at 850 °C and a good production in the range of 900–1000 °C with optimal production rate at 950 °C. Furthermore, xylene/ferrocene mixture produced more MWCNTs at 950 °C with H:Ar (1:7) as the carrier gas. The diameters of the MWCNTs in the temperatures studied ranged from 15 to 95 nm with wall thicknesses between 0.5 and 0.8 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
TABLE II.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.

Similar content being viewed by others

References

  1. S. Iijima: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. R.H. Baughman, A.A. Zakhidov, and W.A. de Heer: Carbon nanotubes the route toward applications. Science 297, 787 (2000).

    Article  Google Scholar 

  3. W.I. Milne, K.B.K. Teo, G.A.J. Amaratunga, P. Legagneux, L. Gangloff, J.P. Schnell, V. Semet, V.B. Thien, and O. Groening: Carbon nanotubes as field emission sources. J. Mater. Chem. 14, 933 (2004).

    Article  CAS  Google Scholar 

  4. L.M. Ericson, H. Fan, H. Peng, V.A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A.N.G. Parra-Vasquez, M.J. Kim, S. Ramesh, R.K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W.W. Adams, W.E. Billups, M. Pasquali, W-F. Hwang, R.H. Hauge, J.E. Fischer, and R.E. Smalley: Macroscopic, neat, single-walled carbon nanotube fibers. Science 305, 1447 (2004).

    Article  CAS  Google Scholar 

  5. W. Mi, J.Y. Lin, Q. Mao, Y. Li, and B. Zhang: A Study on the effects of carrier gases on the structure and morphology of carbon nanotubes prepared by pyrolysis of ferrocene and C2H2 mixture. J. Nat. Gas Chem. 14, 151 (2005).

    CAS  Google Scholar 

  6. R. Wei, F. Li, and Y. Ju: Preparation of carbon nanotubes from methane on Ni/Cu/Al catalyst. J. Nat. Gas Chem. 14, 176 (2005).

    Google Scholar 

  7. J. Qiu, Q. Li, Z. Wang, Y. Sun, and H. Zhang: CVD synthesis of coal-gas-derived carbon nanotubes and nanocapsules containing magnetic iron carbide and oxide. Carbon 44, 2565 (2006).

    Article  CAS  Google Scholar 

  8. S.P. Sharma and S.C. Lakkad: Morphology study of carbon nanospecies grown on carbon fibers by thermal CVD technique. Surf. Coat. Technol. 203, 1329 (2009).

    Article  CAS  Google Scholar 

  9. S.E. Iyuke, T.A. Mamvura, K. Liu, V. Sibanda, M. Meyyappan, and V.K. Varadan: Process synthesis and optimization for the production of carbon nanostructures. Nanotechnology 20 (2009, DOI: 10.1088/0957-4484/20/37/375602).

  10. E. Couteau, K. Hernadi, J.W. Seo, L. Thiên-Nga, R. Cs Mikó, R. Gaál, and L. Ferró: CVD synthesis of high purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chem. Phys. Lett. 378, 9 (2003).

    Article  CAS  Google Scholar 

  11. G. Gulino, R. Vieira, J. Amadou, P. Nguyena, M.J. Ledoux, S. Galvagno, G. Centi, and C. Pham-Huu: C2H6 as an active carbon source for a large scale synthesis of carbon nanotubes by chemical vapor deposition. Appl. Catal., A 279, 89 (2004).

    Article  Google Scholar 

  12. M. Mionic, D.T.L. Alexander, L. Ferró, and A. Magrez: Influence of the catalyst drying process and catalyst support particle size on the carbon nanotubes produced by CCVD. Phys. Status Solidi B 245, 1915 (2008).

    Article  CAS  Google Scholar 

  13. V.K. Varadan and J. Xie: Large scale synthesis of multi-walled carbon nanotubes by microwave CVD. Smart Mater. Struct. 11, 610 (2002).

    Article  CAS  Google Scholar 

  14. A.S. Afolabi, A.S. Abdulkareem, S.E. Iyuke, and H.C. van Zyl Pienaar: Continuous production of carbon nanotubes and diamond films by swirled floating catalyst chemical-vapor-deposition method. S. Afr. J. Sci. 105, 278 (2009).

    CAS  Google Scholar 

  15. X. Li, X. Zhang, L. Ci, R. Shah, C. Wolfe, S. Kar, S. Talapatra, and P.M. Ajayan: Air-assisted growth of ultra-long carbon nanotube bundles. Nanotechnology 19, (2008, DOI: 10.1088/0957-4484/19/45/455609).

  16. S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, and F. Derbyshire: Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett. 315, 25 (1999).

    Article  CAS  Google Scholar 

  17. I. Kunadian, R. Andrews, M.P. Mengüç, and D. Qian: Multiwalled carbon nanotube deposition profiles within a CVD reactor: An experimental study. Chem. Eng. Sci. 64, 1503 (2008).

    Article  Google Scholar 

  18. K.E. Kim, K.J. Kim, W.S. Jung, S.Y. Bae, J. Park, J. Choi, and J. Choo: Investigation on the temperature-dependent growth rate of carbon nanotubes using chemical vapor deposition of ferrocene and acetylene. Chem. Phys. Lett. 401, 459 (2005).

    Article  CAS  Google Scholar 

  19. Z. Yu, D. Chen, B. Totdalb, T. Zhao, Y. Dai, W. Yuan, and A. Holmen: Catalytic engineering of carbon nanotube production. Appl. Catal., A 279, 223 (2005).

    Article  CAS  Google Scholar 

  20. D. Jacques, S. Villain, A.M. Rao, R. Andrews, F. Derbyshire, E.C. Dickey, and D. Qian: Synthesis of multiwalled carbon nanotubes. Center for Applied Energy Research, University of Kentucky (2003): http://www.caer.uky.edu/.

    Google Scholar 

  21. S.R.C. Vivekchand, L.M. Cele, F.L. Deepak, A.R. Raju, and A. Govindaraj: Carbon nanotubes by nebulized spray pyrolysis. Chem. Phys. Lett. 386, 313 (2004).

    Article  CAS  Google Scholar 

  22. K. Kuwana and K. Saito: Modeling ferrocene reactions and iron nanoparticle formation: Application to CVD synthesis of carbon nanotubes. Proc. Combust. Inst. 31, 1857 (2007).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Research Foundation (NRF) focus areas (NRF Nanotechnology flagship program, and Department of Science and Technology (DST)/NRF Centre of Excellence). The student bursaries provided by the University of the Witwatersrand, Johannesburg are much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clarence S. Yah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yah, C.S., Iyuke, S.E., Simate, G.S. et al. Continuous synthesis of multiwalled carbon nanotubes from xylene using the swirled floating catalyst chemical vapor deposition technique. Journal of Materials Research 26, 640–644 (2011). https://doi.org/10.1557/jmr.2010.69

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.69

Navigation