Skip to main content

Advertisement

Log in

Comparative and quantitative investigation of cell labeling of a 12-nm DMSA-coated Fe3O4 magnetic nanoparticle with multiple mammalian cell lines

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work investigated the cell labeling of 12-nm meso-2,-3-dimercaptosuccinic acid (DMSA)-coated Fe3O4 magnetic nanoparticles with multiple mammalian cells. Six different cells, including RAW264.7, Hepa1-6, THP-1, HepG2, HeLa, and HL-7702, were treated with the nanoparticles at various concentrations (20~100 μg/mL) for different times (2~72 h), and the labeling effect was evaluated by observing the intracellular internalization of the nanoparticles with Prussian blue staining and measuring the corresponding cellular iron loading with colorimetric assay. The results demonstrated that the nanoparticles could label all cells studied. However, the labeling efficiency was not the same between different cells, which depended on the cell types, the nanoparticles’ concentration, and the time of treating cells with the nanoparticles. In comparison, RAW264.7 was labeled more effectively than other cells at any concentration of the nanoparticles. The iron loading of RAW264.7 significantly increased with the concentration of the nanoparticles and the treatment time. However, both human liver cells (HepG2 and HL-7720) were labeled with the lowest iron loading. The measurement of cell viability revealed that the growth of all cells was not affected by the nanoparticles at a common in vivo application dose of iron nanoparticles (30 μg/mL), demonstrating that the nanoparticles have better biocompatability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. S.Y. Shaw, E.C. Westly, M.J. Pittet, A. Subramanian, S.L. Schreiber, and R. Weissleder: Perturbational profiling of nanomaterial biologic activity. Proc. Natl. Acad. Sci. USA 105, 7387 (2008).

    Article  CAS  Google Scholar 

  2. M.M. Miller, G.A. Prinz, S.F. Cheng, and S. Bounnak: Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor. Appl. Phys. Lett. 81, 2211 (2002).

    Article  CAS  Google Scholar 

  3. T.K. Jain, M.A. Morales, S.K. Sahoo, D.L. Leslie-Pelecky, and V. Labhasetwar: Iron oxide nanoparticles for sustained delivery of anticancer agents. Mol. Pharm. 2, 194 (2005).

    Article  CAS  Google Scholar 

  4. I. Chourpa, L. Douziech-Eyrolles, L. Ngaboni-Okassa, J.F. Fouquenet, S. Cohen-Jonathan, M. Souce, H. Marchais, and P. Dubois: Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst (Lond.) 130, 1395 (2005).

    Article  CAS  Google Scholar 

  5. L.X. Tiefenauer: Magnetic nanoparticles as contrast agents for medical diagnosis in nanotechnology, in Biology and Medicine: Methods, Devices, and Applications, edited by T. Vo-Dinh (CRC Press, Taylor and Francis, Boca Raton, FL, 2007), pp. 1–20.

    Google Scholar 

  6. G. Morana, E. Salviato, and A. Guarise: Contrast agents for hepatic MRI. Cancer Imaging 7(Special issue A), S24 (2007).

    Article  Google Scholar 

  7. M.M.J. Modo and J.W.M. Bulteì: Molecular and Cellular MR Imaging (CRC Press, Boca Raton, FL, 2007).

    Book  Google Scholar 

  8. C. Corot, P. Robert, J.M. Idee, and M. Port: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 58, 1471 (2006).

    Article  CAS  Google Scholar 

  9. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi: Heat-inducible TNF-alpha gene therapy combined with hyperthermia using magnetic nanoparticles as a novel tumor-targeted therapy. Cancer Gene Ther. 8, 649 (2001).

    Article  CAS  Google Scholar 

  10. R. Hergt and S. Dutz: Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 311, 187 (2007).

    Article  CAS  Google Scholar 

  11. H.Y. Nam, S.M. Kwon, H. Chung, S.Y. Lee, S.H. Kwon, H. Jeon, Y. Kim, J.H. Park, J. Kim, S. Her, Y.K. Oh, I.C. Kwon, K. Kim, and S.Y. Jeong: Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J. Controlled Release 135, 259 (2009).

    Article  CAS  Google Scholar 

  12. B.D. Chithrani, A.A. Ghazani, and W.C. Chan: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662 (2006).

    Article  CAS  Google Scholar 

  13. Z.P. Chen, Y. Zhang, S. Zhang, J.G. Xia, J.W. Liu, K. Xu, and N. Gu: Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloids Surf., A: 316, 210 (2008).

    Article  CAS  Google Scholar 

  14. R. Pieters, D.R. Huismans, A. Leyva, and A.J.P. Veerman: Comparison of the rapid automated MTT-assay with a dye exclusion assay for chemosensitivity testing in childhood leukaemia. Br. J. Cancer 59, 217 (1989).

    Article  CAS  Google Scholar 

  15. U.O. Häfeli, J.S. Riffle, L. Harris-Shekhawat, A. Carmichael-Baranauskas, F. Mark, J.P. Dailey, and D. Bardenstein: Cell uptake and in vitro toxicity of magnetic nanoparticles suitable for drug delivery. Mol. Pharm. 6, 1417 (2009).

    Article  CAS  Google Scholar 

  16. C. Wilhelm, C. Billotey, J. Roger, J.N. Pons, J.C. Bacri, and F. Gazeau: Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24, 1001 (2003).

    Article  CAS  Google Scholar 

  17. C. Wilhelm, F. Gazeau, J. Roger, J.N. Pons, and J.C. Bacri: Interaction of anionic superparamagnetic nanoparticles with cells: Kinetic analyses of membrane adsorption and subsequent internalization. Langmuir 18, 8148 (2002).

    Article  CAS  Google Scholar 

  18. C. Wilhelm and F. Gazeau: Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 29, 3161 (2008).

    Article  CAS  Google Scholar 

  19. J. Zhou, C. Leuschner, C. Kumar, J. Hormes, and W.O. Soboyejo: A TEM study of functionalized magnetic nanoparticles targeting breast cancer cells. Mater. Sci. Eng., C: Biomim. Supramol. Syst. 26, 1451 (2006).

    Article  CAS  Google Scholar 

  20. A.S. Arbab, L.A. Bashaw, B.R. Miller, E.K. Jordan, B.K. Lewis, H. Kalish, and J.A. Frank: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229, 838 (2003).

    Article  Google Scholar 

  21. J.A. Frank, B.R. Miller, A.S. Arbab, H.A. Zywicke, E.K. Jordan, B.K. Lewis, L.H. Bryant, and J.W.M. Bulte Jr: Clinically applicable labeling of mammalian cells and stem cells by combining superparamagnetic iron oxides and commonly available transfection agents. Radiology 228, 480 (2003).

    Article  Google Scholar 

  22. C. Rivière, F.P. Boudghène, F. Gazeau, J. Roger, J.N. Pons, J.P. Laissy, E. Allaire, J.B. Michel, D. Letourneur, and J.F. Deux: Iron oxide nanoparticle–labeled rat smooth muscle cells: Cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235, 959 (2005).

    Article  Google Scholar 

  23. S.H. Ju, G.J. Teng, Y. Zhang, M. Ma, F. Chen, and Y.Y. Ni: In vitro labeling and MRI of mesenchymal stem cells from human umbilical cord blood. Magn. Reson. Imaging 24, 611 (2006).

    Article  Google Scholar 

  24. M. Song, W.K. Moon, Y. Kim, D. Lim, I.C. Song, and B.W. Yoon: Labeling efficacy of superparamagnetic iron oxide nanoparticles to human neural stem cells: Comparison of ferumoxides, monocrystalline iron oxide, cross-linked iron oxide (CLIO)-NH2 and tat-CLIO. Korean J. Radiol. 8, 365 (2007).

    Article  Google Scholar 

  25. S. Schwarz, F. Fernandes, L. Sanroman, M. Hodenius, C. Lang, U. Himmelreich, T. Schmitz-Rode, D. Schueler, M. Hoehn, M. Zenke, and T. Hieronymus: Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells. J. Magn. Magn. Mater. 321, 1533 (2009).

    Article  CAS  Google Scholar 

  26. E. Farrell, P. Wielopolski, P. Pavljasevic, N. Kops, H. Weinans, M.R. Bernsen, and G.J. van Osch: Cell labelling with superparamagnetic iron oxide has no effect on chondrocyte behaviour. Osteoarthritis Cartilage 17, 961 (2009).

    Article  CAS  Google Scholar 

  27. W. Slavin: Atomic absorption spectrometry. Methods Enzymol. 158, 117 (1988).

    Article  CAS  Google Scholar 

  28. H.H. Hoepken, T. Korten, S.R. Robinson, and R. Dringen: Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J. Neurochem. 88, 1194 (2004).

    Article  CAS  Google Scholar 

  29. A.N. Woodmansee and J.A. Imlay: Quantitation of intracellular free iron by electron paramagnetic resonance spectroscopy. Methods Enzymol. 349, 3 (2002).

    Article  CAS  Google Scholar 

  30. V. Strom, K. Hultenby, C. Gruttner, J. Teller, B. Xu, and J. Holgersson: A novel and rapid method for quantification of magnetic nanoparticle–cell interactions using a desktop susceptometer. Nanotechnology 15, 457 (2004).

    Article  CAS  Google Scholar 

  31. S.M. LeVine, M.J. Wulser, and S.G. Lynch: Iron quantification in cerebrospinal fluid. Anal. Biochem. 265, 74 (1998).

    Article  CAS  Google Scholar 

  32. W.W. Fish: Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol. 158, 357 (1988).

    Article  CAS  Google Scholar 

  33. P.E. Adams: Determining iron content in foods by spectrophotometry. J. Chem. Educ. 72, 649 (1995).

    Article  CAS  Google Scholar 

  34. C. Gay, J. Collins, and J.M. Gebicki: Determination of iron in solutions with the ferric-xylenol orange complex. Anal. Biochem. 27, 143 (1999).

    Article  Google Scholar 

  35. V.S. Kalambur, E.K. Longmire, and J.C. Bischof: Cellular level loading and heating of superparamagnetic iron oxide nanoparticles. Langmuir 23, 12329 (2007).

    Article  CAS  Google Scholar 

  36. A. Huberman and C. Perez: Nonheme iron determination. Anal. Biochem. 307, 375 (2002).

    Article  CAS  Google Scholar 

  37. A.M. Rad, B. Janic, A.S.M. Iskander, H. Soltanian-Zadeh, and A.S. Arbab: Measurement of quantity of iron in magnetically labeled cells: Comparison among different UV/VIS spectrometric methods. Biotechniques 43, 627 (2007).

    Article  CAS  Google Scholar 

  38. A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix: Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater. 194, 185 (1999).

    Article  CAS  Google Scholar 

  39. V.H.B. Ho, A. Barcza, R. Chen, K.H. Müller, N.J. Darton, and N.K.H. Slater: The precise control of cell labelling with streptavidin paramagnetic particles. Biomaterials 30, 6548 (2009).

    Article  CAS  Google Scholar 

  40. M.G. Harisinghani, J. Barentsz, P.F. Hahn, W.M. Deserno, S. Tabatabaei, C.H. van de Kaa, J. de la Rosette, and R. Weissleder: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491 (2003).

    Article  Google Scholar 

  41. B.R. Bacon, D.D. Stark, C.H. Park, S. Saini, E.V. Groman, P.F. Hahn, C.C. Compton, and J.T. Ferrucci: Ferrite particles: A new magnetic resonance imaging contrast agent. Lack of acute or chronic hepatotoxicity after intravenous administration. J. Lab. Clin. Med. 110, 164 (1987).

    CAS  Google Scholar 

  42. R. Weissleder, D.D. Stark, B.L. Engelstad, B.R. Bacon, C.C. Compton, D.L. White, P. Jacobs, and J. Lewis: Superparamagnetic iron oxide: Pharmacokinetics and toxicity. AJR Am. J. Roentgenol. 152, 167 (1989).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This investigation was funded by the National Important Science Research Program of China (No. 2006CB933205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinke Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Wang, J. Comparative and quantitative investigation of cell labeling of a 12-nm DMSA-coated Fe3O4 magnetic nanoparticle with multiple mammalian cell lines. Journal of Materials Research 26, 822–831 (2011). https://doi.org/10.1557/jmr.2010.60

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.60

Navigation