Skip to main content
Log in

Analysis on data storage area of NiO-ReRAM with secondary electron image

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Both low and high resistance states (which were written by voltage application in a local region of NiO/Pt films using conducting atomic force microscopy [C-AFM]) were observed with scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The writing regions are distinguishable as dark areas in a secondary electron image and thus can be specified without using a complicated sample fabrication process to narrow down the writing regions such as the photolithography technique. In addition, the writing regions were analyzed using energy-dispersive x-ray spectroscopy (EDS) mapping. No difference between the inside and outside of the writing regions is observed for all the mapped elements including C and Rh. Here, C and Rh are the most probable candidates for contamination that affect the secondary electron image. Therefore, our results suggested that the observed change in the contrast of the secondary electron image is related to the intrinsic change in the electronic state of the NiO film and a secondary electron yield is correlated to the physical properties of the film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table I
Fig. 6

Similar content being viewed by others

References

  1. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D-S. Suh, J.C. Park, S.O. Park, H.S. Kim, I.K. Yoo, U-In Chung, and J.T. Moon: Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. Electron Devices Meeting, IEDM Technical Digest (San Francisco, CA, 2004), p. 587.

    Google Scholar 

  2. K.M. Kim, B.J. Choi, and C.S. Hwang: Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films. Appl. Phys. Lett. 90, 242906 (2007).

    Article  Google Scholar 

  3. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka: Lowering the switching current of resistance random-access memory using a hetero junction structure consisting of transition metal oxides. Jpn. J. Appl. Phys. 45, L991 (2006).

    Article  CAS  Google Scholar 

  4. J.F. Gibbons and W.E. Beadle: Switching properties of thin MO films. Solid-State Electron. 7, 785 (1964).

    Article  CAS  Google Scholar 

  5. M-J. Lee, S. Han, S.H. Jeon, B.H. Park, S. Kang, S-E. Ahn, K H. Kim, C.B. Lee, C.J. Kim, I-K Yoo, D.H. Seo, X-S. Li, J-B. Park, J-H. Lee, and Y. Park: Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory. Nano Lett. 9, 1476 (2009).

    Article  CAS  Google Scholar 

  6. H. Shima, F. Takano, H. Muramatsu, M. Yamazaki, H. Akinaga, and A. Kogure: Local chemical state change in Co-O resistance random-access memory. Phys. Status Solidi 2, 99 (2008) (RRL).

    Article  CAS  Google Scholar 

  7. C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama: Direct observation of oxygen movement during resistance switching in NiO/Pt film. Appl. Phys. Lett. 93, 042106 (2008).

    Article  Google Scholar 

  8. K. Kinoshita, T. Okutani, H. Tanaka, T. Hinoki, K. Yazawa, K. Ohmi, and S. Kishida: Opposite bias polarity dependence of resistive switching in n-type Ga-doped ZnO and p-type NiO thin films. Appl. Phys. Lett. 96, 143506 (2010).

    Article  Google Scholar 

  9. J. Hsu, H. Lai, H. Lin, C. Chuang, and J. Huang: Fabrication of nickel oxide nanostructures by atomic force microscope nano-oxidation and wet etching. J. Vac. Sci. Technol. B 21, 2599 (2003).

    Article  CAS  Google Scholar 

  10. N. Hilleret, C. Scheuerlein, and M. Taborelli: The secondary-electron yield of air-exposed metal surfaces. Appl. Phys., A Mater. Sci. Process. 76, 1085 (2003).

    Article  CAS  Google Scholar 

  11. Y.B. Nian, J. Strozier, N.J. Wu, X. Chen, and A. Ignatiev: Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides. Phys. Rev. Lett. 98, 146403 (2007).

    Article  CAS  Google Scholar 

  12. K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka: Bias polarity dependent data retention of resistive random-access memory consisting of binary transition metal oxide. Appl. Phys. Lett. 89, 103509 (2006).

    Article  Google Scholar 

  13. I.H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi: Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Phys. Rev. B 11, 035105 (2008).

    Article  Google Scholar 

  14. M. Kudo, Y. Sakai, and T. Ichinokawa: Dependencies of secondary electron yields on work function for metals by electron and ion bombardment. Appl. Phys. Lett. 76, 3475 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors thank H. Tanaka and H. Kasada for their experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kinoshita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, K., Makino, T., Yoda, T. et al. Analysis on data storage area of NiO-ReRAM with secondary electron image. Journal of Materials Research 26, 45–49 (2011). https://doi.org/10.1557/jmr.2010.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.57

Navigation