Skip to main content
Log in

Microstructure evolution of Zr2Al3C4 in Cu matrix

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Interfacial reaction and microstructure evolution in a Zr2Al3C4 reinforced Cu composite were studied by x-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Decomposition of Zr2Al3C4 was triggered by the deintercalation of Al atoms. In the initial reaction stage, depletion of Al occurred locally. ZrC and Cu platelets as well as thin twinned ZrC slices were observed inside the Zr2Al3C4 grains. In the later reaction stage, all Al atoms depleted from Zr2Al3C4 and were dissolute into the Cu matrix. The final reaction products were a Cu-Al solid solution, ZrCo.5, and highly disordered graphite, which resulted in large volume shrinkage. These experimental results provided a baseline for controlling interfacial reaction and microstructure development in Cu/Zr2Al3C4-based particle-reinforced Cu composites for optimized mechanical and electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.

Similar content being viewed by others

References

  1. J.W. Kaczmar, K. Pirtrzak, and W. Wlosinski: The production and application of metal matrix composite materials. J. Mater. Process. Technol. 106, 58 (2000).

    Article  Google Scholar 

  2. L. Li, Y.S. Wong, J.Y.H. Fuh, and L. Lu: Effect of TiC in copper-tungsten electrodes on EDM performance. J. Mater. Process. Technol 113, 563 (2001).

    Article  CAS  Google Scholar 

  3. S.C. Tjong and K.C. Lau: Tribological behaviour of SiC particle-reinforced copper matrix composites. Mater. Lett. 43, 274 (2000).

    Article  CAS  Google Scholar 

  4. K.M. Shu and G.C. Tu: The microstructure and the thermal expansion characteristics of Cu/SiCp composites. Mater. Sci. Eng., A 349, 236 (2003).

    Article  Google Scholar 

  5. S.F. Moustafa, Z. Abdel-Hamid, and A.M. Abd-Elhay: Copper matrix SiC and Al2O3 particulate composites by powder metallurgy technique. Mater. Lett. 53, 244 (2002).

    Article  CAS  Google Scholar 

  6. S.C. Tjong and K.C. Lau: Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites. Mater. Sci. Eng., A 282, 183 (2000).

    Article  Google Scholar 

  7. J.C. Schuster and H. Nowotny: Investigations of the ternary systems (Zr, Hf, Nb, Ta)-Al-C. Z. Metallkd. 71, 341 (1980).

    CAS  Google Scholar 

  8. N.T. Tzenov and M.W. Barsoum: Synthesis and characterization of Ti3AlC2. J. Am. Ceram. Soc. 83, 825 (2000).

    Article  CAS  Google Scholar 

  9. X.H. Wang and Y.C. Zhou: Microstructure and properties of Ti3AlC2 prepared by the solid-liquid reaction synthesis and simultaneous in situ hot pressing process. Acta Mater. 50, 3143 (2000).

    Article  Google Scholar 

  10. L.M. Peng: Fabrication and properties of Ti3AlC2 particulates reinforced copper composites. Scr. Mater. 56, 729 (2007).

    Article  CAS  Google Scholar 

  11. J. Zhang and Y.C. Zhou: Microstructure, mechanical, and electrical properties of Cu-Ti3AlC2 and in situ Cu-TiC3 composites. J. Mater. Res. 23, 924 (2008).

    Article  CAS  Google Scholar 

  12. Y. Zhang, Z.M. Sun, and Y.C. Zhou: Cu/Ti3SiC2 composite: A new electrofriction material. Mater. Res. Innovations 3, 80 (1999).

    Article  CAS  Google Scholar 

  13. J.Y. Wang, Y.C. Zhou, T. Liao, and Z.J. Lin: Trend in crystal structure of layered ternary T-M-C carbides (T = Sc, Ti, Cr, Zr, Nb, Mo, Hf, W, and Ta). J. Mater. Res. 22, 2685 (2007).

    Article  CAS  Google Scholar 

  14. J.Y. Wang and Y.C. Zhou: Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides. Annu. Rev. Mater. Res. 39, 10 (2009).

    Article  CAS  Google Scholar 

  15. T.M. Gesing and M. Jeitschko: The crystal structures of Zr3Al3C5, ScAl3C3, andUAl3C3 and their relation to the structures of U2A13C4 and AL,C3. J- Solid State Chem. 140, 396 (1998).

    Article  CAS  Google Scholar 

  16. K. Fukuda, S. Mori, and S. Hashimoto: Crystal structure of Zr2Al3C4. J. Am. Ceram. Soc. 88, 3528 (2005).

    Article  CAS  Google Scholar 

  17. L.F. He, ZJ. Lin, J.Y. Wang, Y.W. Bao, M.S. Li, and Y.C. Zhou: Synthesis and characterization of bulk Zr2Al3C4 ceramic. J. Am. Ceram. Soc. 90, 3687 (2007).

    Article  CAS  Google Scholar 

  18. L.F. He, H.B. Zhong, J.J. Xu, M.S. Li, Y.W. Bao, J.Y. Wang, and Y.C. Zhou: Ultrahigh-temperature oxidation of Zr2Al3C4 via rapid induction heating. Scr. Mater. 60, 547 (2009).

    Article  CAS  Google Scholar 

  19. J. Zhang, L.F. He, and Y.C. Zhou: Highly conductive and strengthened copper matrix composite reinforced by Zr2Al3C4 particulates. Scr. Mater. 60, 976 (2009).

    Article  CAS  Google Scholar 

  20. J. Zhang, J.Y. Wang, and Y.C. Zhou: Structure stability of Ti3AlC2 in Cu and microstructure evolution of Cu-Ti3AlC2 composites. Acta Mater. 55, 4381 (2007).

    Article  CAS  Google Scholar 

  21. K. Suganuma, Y. Miyamoto, and M. Koizumi: Joining of ceramics and metals. Annu. Rev. Mater. Sci. 18, 47 (1988).

    Article  Google Scholar 

  22. R. Asthana and M. Singh: Joining of partially sintered alumina to alumina, titanium, Hastealloy and C-SiC composite using Ag-Cu brazes. J. Eur. Ceram. Soc. 28, 617 (2008).

    Article  CAS  Google Scholar 

  23. R. Asthana and M. Singh: Joining of ZrB2-based ultra-high-temperature ceramic composites using Pd-based braze alloys. Scr. Mater. 61, 257 (2009).

    Article  CAS  Google Scholar 

  24. A. Avishai, C. Scheu, and W.D. Kaplan: Intergranular films at metal-ceramic interfaces: Part I-Interface structure and chemistry. Acta Mater. 53, 1559 (2005).

    Article  CAS  Google Scholar 

  25. I. Obinata and G. Wassermann: X-ray analysis of the solubility of aluminum in copper. Naturwiss. 21, 382 (1933).

    Article  CAS  Google Scholar 

  26. A.J. Bradley and H.J. Goldschmidt: An x-ray study of slowly cooled iron-copper-aluminium alloys-Part I. Alloys rich in iron and copper. J. Inst. Met. 65, 389 (1939).

    Google Scholar 

  27. S.K. Pradhan and M. De: An x-ray determination of the thermal expansion of a-phase Cu-Al alloys at high temperature. J. Appl. Crystallogr. 21, 980 (1988).

    Article  CAS  Google Scholar 

  28. V. Ozolins and J. Haglund: First-principles study of effective cluster interactions and enthalpies of formation of substoichiomet-ric VC. Phys. Rev. B 48, 5069 (1993).

    Article  CAS  Google Scholar 

  29. P.A. Korahavyi, L.V. Pourovokii, H.W. Hugoosson, A.V. Ruban, and B. Johansson: Ab initio study of phase equilibria in TiCx. Phys. Rev. Lett. 88, 15505 (2002).

    Article  CAS  Google Scholar 

  30. H.W. Hugoosson, O. Eriksson, U. Jansson, and B. Johansson: Phase stabilities and homogeneity ranges in 4d-transition-metal carbides: A theoretical study. Phys. Rev. B 63, 134108 (2001).

    Article  CAS  Google Scholar 

  31. G.V. Samsonov, M.S. Koval’chenko, R.Ya. Petrykina, and V.Ya. Naumenko: Hot pressing of the transition metals and their carbides in their homogenity regions. Powder Metall. Met. Ceram. 9, 713 (1970).

    Article  Google Scholar 

  32. R.V. Sara: The system zirconium-carbon. J. Am. Ceram. Soc. 48, 243 (1965).

    Article  CAS  Google Scholar 

  33. A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  34. L. Wu, L.F. He, Y.W. Bao, and Y.C. Zhou: Tribological properties of a Zr2Al3C4 ceramic at ambient temperature. J. Am. Ceram. Soc. 92, 141 (2009).

    Article  CAS  Google Scholar 

  35. J. Robertson: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37, 129 (2002).

    Article  Google Scholar 

  36. F. Tuinstra and J.L. Koening: Raman spectrum of graphite. J. Chem. Phys. 53, 1126 (1970).

    Article  CAS  Google Scholar 

  37. E. Parthe and B. Chabot and: Zr2M3C5_x and Hf2Al3C5_x described with higher symmetrical space group P63/ mmc. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 44, 774 (1988).

    Google Scholar 

  38. J. Lin, M.J. Zhuo, L.F. He, Y.C. Zhou, M.S. Li, and J.Y. Wang: Atomic-scale microstructures of Zr2Al3C4 and Zr3Al3C5. Acta Mater. 54, 3843 (2006).

    Article  CAS  Google Scholar 

  39. J.S. Binford, Jr., J.M. Strohmenger, and T.H. Hebert: A modified drop calorimeter. The heat content of aluminum carbide and cobalt (II) fluoride above °. J. Phys. Chem. 71, 2404 (1967).

    Article  CAS  Google Scholar 

  40. J.C. Schuster: A reinvestigation of the thermal decomposition of aluminum carbide and the constitution of the Al-C system. J. Phase Equilib. 12, 546 (1991).

    Article  CAS  Google Scholar 

  41. C. Qiu and R. Metselaar: Solubility of carbon in liquid Al and stability of A14C3. J. Alloys Compd. 216, 55 (1994).

    Article  CAS  Google Scholar 

  42. J.Y. Wang, Y.C. Zhou, Z.J. Lin, and T. Liao: First-principle investigation on chemical bonding and bulk modulus of the ternary carbide Zr2Al3C5. Phys. Rev. B 72, 052102 (2005).

    Article  CAS  Google Scholar 

  43. J.Y. Wang, Y.C. Zhou, Z. J. Lin, T. Liao, and L.F. He: First-principles prediction of the mechanical properties and electronic structure of ternary aluminum carbide Zr3Al3C5. Phys. Rev. B 73, 134107 (2006).

    Article  CAS  Google Scholar 

  44. T. Liao, J.Y. Wang, and Y.C. Zhou: Atomistic deformation modes and intrinsic brittleness of Al4SiC4: A first-principles investigation. Phys. Rev. B 74, 174112 (2006).

    Article  CAS  Google Scholar 

  45. M. Rühle: Structure and composition of metal/ceramic interfaces. J. Eur. Ceram. Soc. 16, 353 (1996).

    Article  Google Scholar 

  46. H. Zhang, KT. Ramesh, and E.S.C. Chin: Effects of interfacial debonding on the rate-dependent response of metal matrix composites. Acta Mater. 53, 4687 (2005).

    Article  CAS  Google Scholar 

  47. V.A. Romanova, R.R. Balokhonov, and S. Schmauder: The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite. Acta Mater. 57, 97 (2009).

    Article  CAS  Google Scholar 

  48. Y.C. Zhou, X.H. Wang, Z.M. Sun, and S.Q. Chen: Electronic and structural properties of the layered ternary carbide Ti3AlC2. J. Mater. Chem. 11, 2335 (2001).

    Article  CAS  Google Scholar 

  49. D. Music and J.M. Schneider: The correlation between the electronic structure and elastic properties of nanolaminates. JOM 59, 60 (2007).

    Article  CAS  Google Scholar 

  50. J.Y. Wang, Y.C. Zhou, T. Liao, J. Zhang, and Z.J. Lin: A first-principle investigation of the phase stability of Ti2AlC with Al vacancies. Scr. Mater. 58, 227 (2008).

    Article  CAS  Google Scholar 

  51. J. Kovacoik and J. Bielek: Electrical conductivity of Cu/graphite composite material as a function of structural characteristics. Scr. Mater. 35, 151 (1996).

    Article  Google Scholar 

  52. A. Yeoh, J. Persad, and Z. Eliezer: Dimensional response of copper-graphite powder composites to sintering. Scr. Mater. 37, 271 (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, J.Y. & Zhou, Y.C. Microstructure evolution of Zr2Al3C4 in Cu matrix. Journal of Materials Research 26, 372–383 (2011). https://doi.org/10.1557/jmr.2010.52

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.52

Navigation