Skip to main content
Log in

Helium nanobubble release from Pd surface: An atomic simulation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Molecular dynamic simulations of helium atoms escaping from a helium-filled nanobubble near the surface of crystalline palladium reveal unexpected behavior. Significant deformation and cracking near the helium bubble occur initially, and then a channel forms between the bubble and the surface, providing a pathway for helium atoms to propagate toward the surface. The helium atoms erupt from the bubble in an instantaneous and volcano-like process, which leads to surface deformation consisting of cavity formation on the surface, along with modification and atomic rearrangement at the periphery of the cavity. The present simulation results show that, near the palladium surface, there is a helium-bubble-free zone, or denuded zone, with a typical thickness of about 3.0 nm. Combined with experimental measurements and continuum-scale evolutionary model predictions, the present atomic simulations demonstrate that the thickness of the denuded zone, which contains a low concentration of helium atoms, is somewhat larger than the diameter of the helium bubbles in the metal tritide. Furthermore, a relationship between the tensile strength and thickness of metal film is also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. J.N. Yu, X.J. Zhao, W. Zhang, W. Yang, and F.M. Chu: Defect production and accumulation under hydrogen and helium ion irradiation. J. Nucl. Mater. 251, 150 (1997).

    Article  CAS  Google Scholar 

  2. L. Yang, X.T. Zu, H.Y. Xiao, F. Gao, H.L. Heinisch, R J. Kurtz, and K.Z. Liu: Atomistic simulation of helium-defect interaction in alpha-iron. Appl. Phys. Lett. 88, 091915 (2006).

    Article  Google Scholar 

  3. J.H. Evans, A. van Veen, and L.M. Caspers: Formation of helium platelets in Molybdenum. Nature 291, 310 (1981).

    Article  CAS  Google Scholar 

  4. P.B. Johnson and D.J. Mazey: Helium gas bubble lattices in face-centred-cubic metals. Nature 276, 595 (1978).

    Article  CAS  Google Scholar 

  5. R. Vassen, H. Trinkaus, and P. Jung: Helium desorption from Fe and V by atomic diffusion and bubble migration. Phys. Rev. B 44, 4206 (1991).

    Article  CAS  Google Scholar 

  6. R.S. Barnes: Embrittlement of stainless steels and nickel-based alloys at high temperature induced by neutron radiation. Nature 206, 1307 (1965).

    Article  CAS  Google Scholar 

  7. R. Lasser: Tritium and Helium-3 in Metals (Springer-Verlag, Berlin, 1989).

    Book  Google Scholar 

  8. G.C. Abell, L.K. Matson, and R.H. Steinmeyer: Helium release from aged palladium tritide. Phys. Rev. B 41, 1220 (1990).

    Article  CAS  Google Scholar 

  9. D.B. Porker and J.M. Williams: Low-temperature release of ion-implanted helium from nickel. Appl. Phys. Lett. 40, 851 (1982).

    Article  Google Scholar 

  10. D.J. Mitchell and J.L. Provo: Irregularities in helium release rates from metal ditritides. J. Appl. Phys. 57, 1855 (1985).

    Article  CAS  Google Scholar 

  11. C.S. Snow and L.N. Brewer: Helium release and microstructural changes in Er(D, T)2_ x3He x films. J. Nucl. Mater. 374,147 (2008).

    Article  CAS  Google Scholar 

  12. D.E. Peterson, J.W. Early, J.S. Starzynski, and C.C. Land: Helium Release from Radioisotopic Heat Sources, Los Alamos Scientific Laboratory Report No. LA-10023 (Los Alamos, NM, 1984).

    Book  Google Scholar 

  13. K.L. Shanahan and J.S. Holder: Helium release behavior of aged titanium tritides. J. Alloys Compd. 404–406, 365 (2005).

    Article  Google Scholar 

  14. W.G. Wolfer: The pressure for dislocation loop punching by a single bubble. Philos. Mag. A 58, 285 (1988).

    Article  Google Scholar 

  15. W.G. Wolfer: Dislocation loop punching in bubble arrays. Philos. Mag. A 59, 87 (1989).

    Article  Google Scholar 

  16. R.C. Bowman and A. Attalla: NMR studies of the helium distribution in uranium tritide. Phys. Rev. B 16, 1828 (1977).

    Article  CAS  Google Scholar 

  17. W.J. Camp: Helium detrapping and release from metal tritides. J. Vac. Sci. Technol. 14, 514 (1977).

    Article  CAS  Google Scholar 

  18. T. Schober, H. Trinkaus, and R.A. Lasser: A TEM study of the aging of Zr tritides. J. Nucl. Mater. 141–143, 453 (1986).

    Article  Google Scholar 

  19. D.F. Cowgill: Helium nano-bubble evolution in aging metal tritides. Fusion Sci. Technol. 48, 539 (2005).

    Article  CAS  Google Scholar 

  20. S. Thiebaut, M. Douilly, S. Contreras, B. Limacher, V. Paul-Boncour, B. Decamps, and A. Percheron: He retention in LaNi5 and Pd tritides: Dependence on stoichiometry, He distribution and aging effects. J. Alloys Compd. 446–447, 660 (2007).

    Article  Google Scholar 

  21. J.A. Emig, R.G. Garza, L.D. Christensen, P.R. Coronado, and P.C. Souers: Helium release from 19-year-old palladium tritide. J. Nucl. Mater. 187, 209 (1992).

    Article  CAS  Google Scholar 

  22. W.Y. Hu: Proceedings of the International Conference on New Frontiers of Process Science and Engineering in Advanced Materials, 14th IKETANI Conference, edited by M. Naka and T. Yamane and (Osaka University, Osaka, Japan, 2004), p. 7.

  23. S.F. Xiao, W.Y. Hu, and J.Y. Yang: Melting behaviors of nano-crystalline. Ag. J. Phys. Chem. B 109, 20339 (2005).

    Article  CAS  Google Scholar 

  24. S.F. Xiao and W.Y. Hu: Comparative study of microstructural evolution during melting and crystallization. J. Chem. Phys. 125, 014503 (2006).

    Article  Google Scholar 

  25. M.I. Baskes and C.F. Melius: Pair potentials for fee metals. Phys. Rev. B2Q, 3197 (1979).

    Article  Google Scholar 

  26. R.A. Johnson: Empirical potentials and their use in the calculation of energies of point defects in metals. J. Phys. F: Met. Phys. 3, 295 (1973).

    Article  CAS  Google Scholar 

  27. C.B. Barber, D.P. Dobkin, and H. Huhdanpaa: The Quickhull algorithm for convex hulls. ACM Trans. Math. Softw. 22, 469 (1996).

    Article  Google Scholar 

  28. A.E. Selyutin: Determination of the ultimate load for breaking membranes. Problemy Prochnosti. 11, 119 (1985).

    Google Scholar 

  29. M.P. Allen and D.J. Tidesley: Computer Simulation of Liquids (Oxford Science Publications, Oxford, 1987).

    Google Scholar 

  30. University of Virginia, MSE 524, Modeling in Materials Science. (Leonid Zhigilei, Spring, 2003).

  31. M. Cerny and J. Pokluda: Influence of superimposed biaxial stress on the tensile strength of perfect crystals from first principles. Phys. Rev. B 76, 024115 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangyu Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Hu, W., Deng, H. et al. Helium nanobubble release from Pd surface: An atomic simulation. Journal of Materials Research 26, 416–423 (2011). https://doi.org/10.1557/jmr.2010.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.49

Navigation