Skip to main content
Log in

Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu-Al alloys during thermal annealing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Effects of stacking fault energy (SFE) on the thermal stability and mechanical properties of nanostructured (NS) Cu-Al alloys during thermal annealing were investigated in this study. Compared with NS Cu-5at.%Al alloy with the higher SFE, NS Cu-8at.%Al alloy exhibits the lower critical temperatures for the initiation of recrystallization and the transition from recovery-dominated to recrystallization-dominated process, which significantly signals its low thermal stability. This may be attributed to the large microstructural heterogeneities resulting from severe plastic deformation. With increasing the annealing temperatures, both Cu-Al alloys present the similar trend of decreased strength and improved ductility. Meanwhile, the remarkable enhancement of uniform elongation is achieved when the volume fraction of Static recrystallization (SRX) grains exceeds -80%. Moreover, the better strength-ductility combination was achieved in the Cu-8at.%Al alloy with lower SFE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
TABLE I.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    Article  CAS  Google Scholar 

  2. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  3. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).

    Article  CAS  Google Scholar 

  4. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  5. Y.M. Wang, M.W. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).

    Article  CAS  Google Scholar 

  6. X.X. Huang, N. Hansen, and N. Tsuji: Hardening by annealing and softening by deformation in nanostructured metals. Science 312, 249 (2006).

    Article  CAS  Google Scholar 

  7. Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Tougher ultrarine grain Cu via high-angle grain boundaries and low dislocation density. Appl. Phys. Lett. 92, 081903 (2008).

    Article  Google Scholar 

  8. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Strength and ductility of ultrarine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).

    Article  CAS  Google Scholar 

  9. Y.S. Li, Y. Zhang, N.R. Tao, and K. Lu: Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation. Scr. Mater. 59, 475 (2008).

    Article  CAS  Google Scholar 

  10. R.Z. Valiev, A.V. Sergueeva, and A.K. Mukherjee: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scr. Mater. 49, 669 (2003).

    Article  CAS  Google Scholar 

  11. B. Srinivasarao, K. Oh-ishi, T. Ohkubo, T. Mukai, and K. Hono: Synthesis of high-strength bimodally grained iron by mechanical alloying and spark plasma sintering. Scr. Mater. 58, 759 (2008).

    Article  CAS  Google Scholar 

  12. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials (Prentice Hall, NJ, 1999).

    Google Scholar 

  13. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in FCC crystals. Philos. Mag. 88, 3011 (2008).

    Article  CAS  Google Scholar 

  14. F.J. Humphreys and M. Hatherly Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, 2004).

    Google Scholar 

  15. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586 (2009).

    Article  CAS  Google Scholar 

  16. X.H. An, Q.Y. Lin, S. Qu, G. Yang, S.D. Wu, and Z.F. Zhang: Influence of stacking fault energy on the accommodation of severe shear strain in Cu-Al alloys during equal channel angular pressing. J. Mater. Res. 24, 3636 (2009).

    Article  CAS  Google Scholar 

  17. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang: High strength and utilizable ductility of bulk ultrafine-grained Cu-Al alloys. Appl. Phys. Lett. 92, 201915 (2008).

    Article  Google Scholar 

  18. S.D. Wu, X.H. An, W.Z. Han, S. Qu, and Z.F. Zhang: Microstruc-ture evolution and mechanical properties of fee metallic materials subjected to equal channel angular pressing. Acta Mater. Sin. 46, 257 (2010).

    CAS  Google Scholar 

  19. Y.T. Zhu and T.G. Langdon: Observations and issues on mechanisms of grain refinement during ECAP process. Mater. Sci. Eng., A 291, 46 (2000).

    Article  Google Scholar 

  20. F.J. Humphreys: Review grain and subgrain characterisation by electron backscatter diffraction. J. Mater. Sci. 36, 3833 (2001).

    Article  CAS  Google Scholar 

  21. H.J. Yang, Y.B. Xu, Y. Seki, V.F. Nesterenko, and M.A. Meyers: Analysis and characterization by electron backscatter diffraction of microstructural evolution in the adiabatic shear bands in Fe-Cr-Ni alloys. J. Mater. Res. 24, 2617 (2009).

    Article  CAS  Google Scholar 

  22. A. Rohatgi and K.S. Vecchio: The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials. Mater. Sci. Eng., A 328, 256 (2002).

    Article  Google Scholar 

  23. H. Paul, J.H. Driver, and Z. Jasiehski: Shear banding and re-crystallization nucleation in a Cu-2%A1 alloy single crystal. Acta Mater. 50, 815 (2002).

    Article  CAS  Google Scholar 

  24. F.J. Humphreys: A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures-I. The basic model. Acta Mater. 45, 4231 (1997).

    Article  CAS  Google Scholar 

  25. M. Ferry and F.J. Humphreys: Discontinuous subgrain growth in deformed and annealed 110 (001) aluminium single crystals. Acta Mater. 44, 1293 (1996).

    Article  CAS  Google Scholar 

  26. Y. Huang, F.J. Humphreys, and M. Ferry: The annealing behaviour of deformed cube-oriented aluminium single crystals. Acta Mater. 48, 2543 (2000).

    Article  CAS  Google Scholar 

  27. S.D. Wu, Z.G. Wang, C.B. Jiang, G.Y. Li, I.V. Alexandrov, and R.Z. Valiev: The formation of PSB-like shear bands in cyclically deformed ultrarine grained copper processed by ECAP. Scr. Mater. 48, 1605 (2003).

    Article  CAS  Google Scholar 

  28. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497 (2001).

    Article  CAS  Google Scholar 

  29. P.J. Hurley and F.J. Humphreys: Modelling the recrystallization of single-phase aluminium. Acta Mater. 51, 3779 (2003).

    Article  CAS  Google Scholar 

  30. Y.S. Li, N.R. Tao, and K. Lu: Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures. Acta Mater. 56, 230 (2008).

    Article  CAS  Google Scholar 

  31. E. Ma, Y.M. Wang, Q.H. Lu, M.L. Sui, L. Lu, and K. Lu: Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 85, 4932 (2004).

    Article  CAS  Google Scholar 

  32. Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon: Tailoring stacking fault energy for high ductility and high strength in ultrarine grained Cu and its alloy. Appl. Phys. Lett. 89, 121906 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, X.H., Qu, S., Wu, S.D. et al. Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu-Al alloys during thermal annealing. Journal of Materials Research 26, 407–415 (2011). https://doi.org/10.1557/jmr.2010.39

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.39

Navigation