Skip to main content
Log in

The effects of surface and surface coatings on fluorescence properties of hollow NaYF4:Yb,Er upconversion nanoparticles

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hollow nanoparticles of hexagonal close-packed (hcp)-NaYF4:Yb,Er were synthesized by thermal decomposition of trifmoroacetate precursors at 340 °C via vacancy diffusion, likely due to the Kirkendall effect and Ostwald ripening mechanism. The average outer diameter, inner diameter, and shell thickness of these hollow particles were 14 ± 3 nm, 7 ± 2 nm, and 4 ± 1 nm, respectively. The surface effects on the fluorescence properties of these hollow particles were studied by comparing with that of solid NaYF4: Yb,Er (average size ~ 15 ± 3 nm) and solid NaYF4 core/NaYF4: Yb,Er shell (NaYF4 core ~10 ± 1 nm and NaYF4:Yb,Er shell ~3 ± 2 nm) nanoparticles containing similar composition of Yb and Er ions. The green, red, and total emission intensities decreased with increasing upconversion active volume-normalized surface area. Surface coatings of undoped NaYF4 on both inner and outer surfaces of the hollow nanoparticles enhanced the total emission intensity by ~ 19 and ~5 times compared with those of the hollow and solid NaYF4:Yb,Er nanoparticles, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. A1
Fig. A2
Fig. 2
Fig. 3
Fig. 4
Table AI
Table AII
Fig. 5
Fig. 6
Fig. A3
Fig. A4
Fig. A5
Fig. A6

Similar content being viewed by others

References

  1. C. Burda, X. Chen, R. Narayanan, and M.A. El-Sayed: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).

    Article  CAS  Google Scholar 

  2. N. Menyuk, K. Dwight, and J.W. Pierce: NaYF4:Yb, Er-An efficient upconversion phosphor. Appl. Phys. Lett. 21, 159 (1972).

    Article  CAS  Google Scholar 

  3. Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, and H. Zhang: Upconversion luminescence of P-NaYF4:Yb +, Er +@ß-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence. J. Phys. Chem. C 113, 7164 (2009).

    Article  CAS  Google Scholar 

  4. D. Yuan, G.S. Yi, and G.M. Chow: Effects of size and surface on luminescence properties of submicron upconversion NaYF4:Yb, Er particles. J. Mater. Res. 24, 2042 (2009).

    Article  Google Scholar 

  5. L.P. Qian, D. Yuan, G.S. Yi, and G.M. Chow: Critical shell thickness and emission enhancement of NaYF4:Yb, Er/NaYF4/ silica core/shell/shell nanoparticles. J. Mater. Res. 24, 3559 (2009).

    Article  CAS  Google Scholar 

  6. S. Heer, K. Kompe, H.U. Giidel, and M. Haase: Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102 (2004).

    Article  CAS  Google Scholar 

  7. J.W. Stouwdam, G.A. Hebbink, J. Huskens, and F.C.J.M. van Veggel: Lanthanide-doped nanoparticles with excellent luminescent properties in organic media. Chem. Mater. 15, 4604 (2003).

    Article  CAS  Google Scholar 

  8. J. Shan, M. Uddi, R. Wei, N. Yao, and Y. Ju: The hidden effects of particle shape and criteria for evaluating the upconversion luminescence of the lanthanide doped nanophosphors. J. Phys. Chem. C 114, 2452 (2010).

    Article  CAS  Google Scholar 

  9. S.F. Lim, W.S. Ryu, and R.H. Austin: Particle size dependence of the dynamic photophysical properties of NaYF4:Yb, Er nanocrystals. Opt. Express 18, 2309 (2010).

    Article  CAS  Google Scholar 

  10. G.S. Yi and G.M. Chow: Water-soluble NaYF4:Yb, Er(Tm)/ NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 19, 341 (2007).

    Article  CAS  Google Scholar 

  11. H.X. Mai, Y.W. Zhang, L.D. Sun, and C.H. Yan: Highly efficient multicolor up-conversion emissions and their mechanisms of monodisperse NaYF4:Yb, Er core and core/shell-structured nanocrystals. J. Phys. Chem. C 111, 13721 (2007).

    Article  CAS  Google Scholar 

  12. L. Li, Y. Chu, Y. Liu, and L. Dong: Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J. Phys. Chem. C 111, 2123 (2007).

    Article  CAS  Google Scholar 

  13. E. Ghadiri, N. Taghavinia, S.M. Zakeeruddin, M. Gratzel, and J.E. Moser: Enhanced electron collection efficiency in dye-sensitized solar cells based on nanostructured TiO2 hollow fibers. Nano Lett. 10, 1632 (2010).

    Article  CAS  Google Scholar 

  14. Z.Z. Li, L.X. Wen, L. Shao, and J.F. Chen: Fabrication of porous hollow silica nanoparticles and their applications in drug release control. J. Controlled Release 98, 245 (2004).

    Article  CAS  Google Scholar 

  15. S. Liu, R. Xing, F. Lu, R.K. Rana, and J.J. Zhu: One-pot template-free fabrication of hollow magnetite nanospheres and their application as potential drug carriers. J. Phys. Chem. C 113, 21042 (2009).

    Article  CAS  Google Scholar 

  16. J. Ding and G. Liu: Water-soluble hollow nanospheres as potential drug carriers. J. Phys. Chem. B 102, 6107 (1998).

    Article  CAS  Google Scholar 

  17. K.N. Tu and U. Gosele: Hollow nanostructures based on the Kirkendall effect: Design and stability considerations. Appl. Phys. Left 86, 093111 (2005).

    Google Scholar 

  18. N. Ren, B. Wang, Y.H. Yang, Y.H. Zhang, W.L. Yang, Y.H. Yue, Z. Gao, and Y. Tang: General method for the fabrication of hollow microcapsules with adjustable shell compositions. Chem. Mater. 17, 2582 (2005).

    Article  CAS  Google Scholar 

  19. Y. Wang, A.S. Angelatos, and F. Caruso: Template synthesis of nanostructured materials via layer-by-layer assembly. Chem. Mater. 20, 848 (2008).

    Article  CAS  Google Scholar 

  20. D.H.M. Buchold and C. Feldmann: Nanoscale y-AlO(OH) hollow spheres: Synthesis and container-type functionality. Nano Lett. 7, 3489 (2007).

    Article  CAS  Google Scholar 

  21. Y.S. Lin, S.H. Wu, C.T. Tseng, Y. Hung, C. Chang, and C.Y. Mou: Synthesis of hollow silica nanospheres with a microemulsion as the template. Chem. Commun. (Camb.) 3542 (2009).

    Google Scholar 

  22. F. Zhang, Y. Shi, X. Sun, D. Zhao, and G.D. Stucky: Formation of hollow upconversion rare-earth fluoride nanospheres: Nanoscale Kirkendall effect during ion exchange. Chem. Mater. 21, 5237 (2009).

    Article  CAS  Google Scholar 

  23. J. Shan, N. Yao, and Y. Ju: Phase transition induced formation of hollow structures in colloidal lanthanide-doped NaYF4 nanocrystals. J. Nanopart. Res. 12, 1429 (2010).

    Article  CAS  Google Scholar 

  24. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, and A.P. Alivisatos: Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711 (2004).

    Article  CAS  Google Scholar 

  25. Y. Yin, C.K. Erdonmez, A. Cabot, S. Hughes, and A.P. Alivisatos: Colloidal synthesis of hollow cobalt sulfide nanocrystals. Adv. Funct. Mater. 16, 1389 (2006).

    Article  CAS  Google Scholar 

  26. H.J. Fan, U. Gosele, and M. Zacharias: Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 3, 1660 (2007).

    Article  CAS  Google Scholar 

  27. A. Cabot, M. Ibaiiez, P. Guardia, and A.P. Alivisatos: Reaction regimes on the synthesis of hollow particles by the Kirkendall effect. J. Am. Chem. Soc. 131, 11326 (2009).

    Article  CAS  Google Scholar 

  28. Y. Wang, L. Cai, and Y. Xia: Monodisperse spherical colloids of Pb and their use as chemical templates to produce hollow particles. Adv. Mater. 17, 473 (2005).

    Article  CAS  Google Scholar 

  29. E.O. Kirkendall: Diffusion of zinc in alpha brass. Trans. AIME 147, 104 (1942).

    Google Scholar 

  30. A.D. Smigelskas and E.O. Kirkendall: Zinc diffusion in alpha brass. Trans. AIME 171, 130 (1947).

    Google Scholar 

  31. H.G. Yang and H.C. Zeng: Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening. J. Phys. Chem. B 108, 3492 (2004).

    Article  CAS  Google Scholar 

  32. J. Li and H.C. Zeng: Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening. J. Am. Chem. Soc. 129, 15839 (2007).

    Article  CAS  Google Scholar 

  33. G. Lin, J. Zheng, and R. Xu: Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities. J. Phys. Chem. C 112, 7363 (2008).

    Article  CAS  Google Scholar 

  34. G.S. Yi and G.M. Chow: Synthesis of hexagonal-phase NaYF4:Yb, Er and NaYF4:Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324 (2006).

    Article  CAS  Google Scholar 

  35. H.X. Mai, Y.W. Zhang, R. Si, Z.G. Yan, L.D. Sun, L.P. You, and C.H. Yan: High-quality sodium rare-Earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 128, 6426 (2006).

    Article  CAS  Google Scholar 

  36. L. Wang and Y. Li: Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chem. Mater. 19, 727 (2007).

    Article  CAS  Google Scholar 

  37. C. Liu, H. Wang, X. Li, and D. Chen: Monodisperse, size-tunable and highly efficient P-NaYF4:Yb, Er(Tm) up-conversion luminescent nanospheres: Controllable synthesis and their surface modifications. J. Mater. Chem. 19, 3546 (2009).

    Article  CAS  Google Scholar 

  38. W. Feng, L.D. Sun, Y.W. Zhang, and C.H. Yan: Solid-to-hollow single-particle manipulation of a self-assembled luminescent NaYF4:Yb, Er nanocrystal monolayer by electron-beam lithography. Small 5, 2057 (2009).

    Article  CAS  Google Scholar 

  39. Y.W. Zhang, X. Sun, R. Si, L.P. You, and C.H. Yan: Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 127, 3260 (2005).

    Article  CAS  Google Scholar 

  40. J.E. Roberts: Lanthanum and neodymium salts of trifluoroacetic acid. J. Am. Chem. Soc. 83, 1087 (1961).

    Article  CAS  Google Scholar 

  41. Y. Yoshimura and K. Ohara: Thermochemical studies on the lanthanoid complexes of trifluoroacetic acid. J. Alloys Compd. 408–412, 573 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Karvianto acknowledges the support of the NUS research scholarship. We thank D. Yuan, L.P. Qian, and Dr. Daniel Chua for helpful technical discussions. G.M. Chow thanks the support of this work by FoE (FB) NUS research fund and the grant from the Office of Naval Research, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Chow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karvianto, Chow, G.M. The effects of surface and surface coatings on fluorescence properties of hollow NaYF4:Yb,Er upconversion nanoparticles. Journal of Materials Research 26, 70–81 (2011). https://doi.org/10.1557/jmr.2010.30

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.30

Navigation