Skip to main content
Log in

Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) coupled with micro- or nanofluidics integrated into optofluidic devices offer many advantages over conventional SERS conducted under static conditions. Higher reproducibility, larger intensity, as well as greater enhancement can be achieved by efficient mixing of analytes and SERS enhancers under a continuous flow. Progress and advances in the past 10 years, including the design of channels and efficient mixing conditions, assemblies of SERS substrates for optimal enhancement, and advantages of optofluidic-SERS analysis, are reviewed. Recent results show that optofluidic-SERS effectively overcomes many of the difficulties and limitations plaguing conventional SERS and the novel technique has enormous application potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.
FIG. 10.
FIG. 11.
FIG. 12.
FIG. 13.
FIG. 14.
FIG. 15.
FIG. 16.
FIG. 17.
FIG. 18.
FIG. 19.

Similar content being viewed by others

References

  1. E. Smith and G. Dent: Modern Raman Spectroscopy-A Practical Approach (John Wiley & Sons Ltd., West Sussex, England, 2005).

    Google Scholar 

  2. B. Schrader: Infrared and Raman Spectroscopy (VCH, Weinheim, Germany, 1995).

    Book  Google Scholar 

  3. C.V. Raman and K.S. Krishnan: A new type of secondary radiation. Nature 121, 501 (1928).

    Article  CAS  Google Scholar 

  4. M. Schmitt and J. Popp: Raman spectroscopy at the beginning of the twenty-first century. J. Raman Spectrosc. 37, 20 (2006).

    Article  CAS  Google Scholar 

  5. M. Fleischmann, P.J. Hendra, and A.J. McQuillan: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163 (1974).

    Article  CAS  Google Scholar 

  6. Y.S. Huh, A.J. Chung, and D. Erickson: Surface enhanced Raman spectroscopy and its application to molecular and cellular analysis. Microfluid. Nanofluid. 6, 285 (2009).

    Article  CAS  Google Scholar 

  7. D.L. Jeanmaire and R.P. Van Duyne: Surface Raman spectroelectrochemistry. J. Electroanal. Chem. 84, 1 (1977).

    Article  CAS  Google Scholar 

  8. S. Chan, S. Kwon, T.W. Koo, L.P. Lee, and A.A. Berlin: Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores. Adv. Mater. 15, 1595 (2003).

    Article  CAS  Google Scholar 

  9. W.E. Doering and S. Nie: Spectroscopic tags using dye-embedded nanoparticies and surface-enhanced Raman scattering. Anal. Chem. 75, 6171 (2003).

    Article  CAS  Google Scholar 

  10. S.P. Mulvaney, M.D. Musick, C.D. Keating, and M.J. Natan: Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19, 4784 (2003).

    Article  CAS  Google Scholar 

  11. N.R. Jana: Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst (Lond.) 128, 954 (2003).

    Article  CAS  Google Scholar 

  12. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, and M.S. Feld: Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957 (1999).

    Article  CAS  Google Scholar 

  13. Y. Xu, J. Wu, W. Sun, D. Tao, L. Yang, Z. Song, S. Weng, Z. Xu, R.D. Soloway, D. Xu, and G. Xu: A new mechanism of Raman enhancement and its application. Chemistry 8, 5323 (2002).

    Article  CAS  Google Scholar 

  14. P. Kambhampati, A. Campion, and O.K. Song: Probing photoinduced charge transfer at atomically smooth metal surfaces using surface-enhanced Raman scattering. Phys. Status Solidi A: Appl. Res. 75, 233 (1999).

    Article  Google Scholar 

  15. T. Qiu, W.J. Zhang, and P.K. Chu: Recent progress in fabrication of anisotropic nanostructures for surface-enhanced Raman spectroscopy. Recent Pat. Nanotechnol. 3, 10 (2009).

    Article  CAS  Google Scholar 

  16. M. Moskovits: Surface enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985).

    Article  CAS  Google Scholar 

  17. M. Moskovits: Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485 (2005).

    Article  CAS  Google Scholar 

  18. L. Chen and J. Choo: Recent advances in surface-enhanced Raman scattering detection technology for microfluidic chips. Electrophoresis 29, 1815 (2008).

    Article  CAS  Google Scholar 

  19. J. Ni, R.J. Lipert, G.B. Dawson, and M.D. Porter: Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 71, 4903 (1999).

    Article  CAS  Google Scholar 

  20. K. Kneipp, Y. Wang, and H. Kneipp: Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667 (1997).

    Article  CAS  Google Scholar 

  21. K. Kneipp, H. Kneipp, and V.B. Kartha: Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 6281 (1998).

    Article  Google Scholar 

  22. S. Nie and R.S. Emory: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997).

    Article  CAS  Google Scholar 

  23. G.T. Taylor, S.K. Sharma, and K. Mohanan: Optimization of a flow-injection sampling system for quantitative-analysis of dilute aqueous-solutions using combined resonance and surface-enhanced Raman-spectroscopy (SERRS). Appl. Spectrosc. 44, 635 (1990).

    Article  CAS  Google Scholar 

  24. J.J. Laserna: Combining fingerprinting capability with trace analytical detection: Surface-enhanced Raman spectrometry. Anal. Chim. Acta 283, 607 (1993).

    Article  CAS  Google Scholar 

  25. L. He, M.J. Natan, and C.D. Keating: Surface-enhanced Raman scattering: A structure-specific detection method for capillary electrophoresis. Anal. Chem. 72, 5438 (2000).

    Google Scholar 

  26. P.A. Walker, M.D. Morris, M.A. Burns, and B.N. Johnson: Isotachophoretic separations on a microchip: Normal Raman spectroscopy detection. Anal. Chem. 70, 3766 (1998).

    Article  CAS  Google Scholar 

  27. R.M. Connatser, M. Cochran, R.J. Harrison, and M.J. Sepaniak: Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices. Electrophoresis 29, 1441 (2008).

    Article  CAS  Google Scholar 

  28. A. Dölle, M.A. Suhm, and H.J. Weingärtner: Anisotropic molecular reorientation of liquid benzene revisited. A study using 13C magnetic relaxation through chemical shift anisotropy and spin rotation. J. Chem. Phys. 94, 3361 (1991).

    Article  Google Scholar 

  29. K. Kneipp, H. Kneipp, R. Manoharan, E.B. Hanlon, I. Itzkan, R.R. Dasari, and M.S. Feld: Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl. Spectrosc. 52, 1493 (1998).

    Article  CAS  Google Scholar 

  30. A. Chehaidar, R. Carles, A. Zwick, C. Meunier, B. Cros, and J. Durand: Chemical bonding analysis of a-SiC: H films by Raman spectroscopy. J. Non-Cryst. Solids 37, 169 (1994).

    Google Scholar 

  31. A. Ehlert and S. Buettgenbach: Automatic sensor system for groundwater monitoring network. Proc. SPIE 3857, 61 (1999).

    Article  CAS  Google Scholar 

  32. D. Psaltis, S.R. Quake, and C. Yang: Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442, 381 (2006).

    Article  CAS  Google Scholar 

  33. A. Berthod, J.J. Laserna, and J.D. Winefordner: Surface enhanced Raman spectrometry on silver hydrosols studied by flow-injection analysis. Appl. Spectrosc. 41, 1137 (1987).

    Article  CAS  Google Scholar 

  34. A. Manz, D.J. Harrison, E.M. Verpoorte, J.C. Fettinger, A. Paulus, H. Lüdi, and H.M. Widmer: Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip. J. Chromatog. 593, 253 (1992).

    Article  CAS  Google Scholar 

  35. T. Park, S. Lee, G.H. Seong, J. Choo, E.K. Lee, Y.S. Kim, W.H. Ji, S.Y. Hwang, D.G. Gweon, and S. Lee: Highly sensitive signal detection of duplex dye-labelled DNA oligonucleotides in a PDMS microfluidic chip: Confocal surface-enhanced Raman spectroscopic study. Lab Chip 5, 437 (2005).

    Article  CAS  Google Scholar 

  36. P.C. Lee and D. Meisel: Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86, 3391 (1982).

    Article  CAS  Google Scholar 

  37. N. Leopold and B. Lendl: A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 107, 5723 (2003).

    Article  CAS  Google Scholar 

  38. L. Gunnarsson, E.J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll: Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett. 78, 802 (2001).

    Article  CAS  Google Scholar 

  39. L.A. Dick, A.D. McFarland, C.L. Haynes, and R.P. Van Duyne: Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853 (2002).

    Article  CAS  Google Scholar 

  40. K. Faulds, D. Graham, and W.E. Smith: Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal. Chem. 76, 412 (2004).

    Article  CAS  Google Scholar 

  41. H. Wang, C.S. Levin, and N.J. Halas: Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J. Am. Chem. Soc. 127, 14992 (2005).

    Article  CAS  Google Scholar 

  42. I.M. White, H. Oveys, and X. Fan: Liquid core optical ring resonator sensors. Opt. Lett. 31, 1319 (2006).

    Article  Google Scholar 

  43. F.T. Docherty, P.B. Monaghan, R. Keir, D. Graham, W.E. Smith, and J.M. Cooper: The first SERRS multiplexing from labelled oligonucleotides in a microfluidics lab-on-a-chip. Chem. Commun. 1, 118 (2004).

    Article  CAS  Google Scholar 

  44. I.M. White, J. Gohring, and X. Fan: SERS-based detection in an optofluidic ring resonator platform. Opt. Express 15, 17434 (2007).

    Google Scholar 

  45. P. Measor, L. Seballos, D. Yin, and J.Z. Zhang: On-chip surface-enhanced Raman scattering detection using integrated liquid-core waveguides. Appl. Phys. Lett. 90, 211107 (2007).

    Article  CAS  Google Scholar 

  46. I.M. White, S.I. Shapova, H. Zhu, J.D. Suter, S. Lacey, P. Zhang, H. Oveys, L. Brewington, J. Gohring, and X. Fan: Applications of the liquid core optical ring resonator platform. Proc. SPIE 6757, 675707 (2007).

    Article  CAS  Google Scholar 

  47. Y.S. Huh and D. Erickson: Aptamer based surface-enhanced Raman scattering detection of vasopressin using multilayer nanotube arrays. Biosens. Bioelectron. 25, 1240 (2010).

    Article  CAS  Google Scholar 

  48. D. Choi, T. Kang, H. Cho, Y. Choi, and L.P. Lee: Additional amplifications of SERS via an optofluidic CD-based platform. Lab Chip 9, 239 (2009).

    Article  CAS  Google Scholar 

  49. H. Becker and C. Gartner: Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12 (2000).

    Article  CAS  Google Scholar 

  50. J.M. Ng, I. Gitlin, A.D. Stroock, and G.M. Whitesides: Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23, 3461 (2002).

    Article  CAS  Google Scholar 

  51. H. Becker and L.E. Locascio: Polymer microfluidic devices. Talanta 56, 267 (2002).

    Article  CAS  Google Scholar 

  52. A.J. deMello: Control and detection of chemical reactions in microfluidic systems. Nature 442, 394 (2006).

    Article  CAS  Google Scholar 

  53. S.K. Sia and G.M. Whitesides: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563 (2003).

    Article  CAS  Google Scholar 

  54. N. Ohnishi, W. Satoh, K. Morimoto, J. Fukuda, and H. Suzuki: Automatic electrochemical sequential processing in a microsystem for urea detection. Sens. Actuators, B: Chem. 144, 146 (2010).

    Article  CAS  Google Scholar 

  55. E.R. Choban, L.J. Markoski, A. Wieckowski, and P.J.A. Kenis: Microfluidic fuel cell based on laminar flow. J. Power Sources 128, 54 (2004).

    Article  CAS  Google Scholar 

  56. N. Kockmann, J. Kastner, and P. Woias: Reactive particle precipitation in liquid microchannel flow. Chem. Eng. J. 135, 110 (2008).

    Article  CAS  Google Scholar 

  57. D. Lee, S. Lee, G.H. Seong, J. Choo, E.K. Lee, D.G. Gweon, and S. Lee: Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced raman spectroscopy. Appl. Spectrosc. 60, 373 (2006).

    Article  Google Scholar 

  58. L.X. Quang, C. Lim, G.H. Seong, J. Choo, K.J. Dob, and S.K. Yoo: A portable surface-enhanced Raman scattering sensor integrated with a lab-on-a-chip for field analysis. Lab Chip 8, 2214 (2008).

    Article  CAS  Google Scholar 

  59. D.J. Kim, H.J. Oh, T.H. Park, J.B. Choo, and S.H. Lee: An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions. Analyst (Lond.) 130, 293 (2005).

    Article  CAS  Google Scholar 

  60. R.H. Liu, J. Yang, M.Z. Pindera, M. Athavale, and P. Grodzinski: Bubble-induced acoustic micromixing. Lab Chip 2, 151 (2002).

    Article  CAS  Google Scholar 

  61. M.H. Oddy, J.G. Santiago, and J.C. Mikkelsen: Electrokinetic instability micromixing. Anal. Chem. 73, 5822 (2001).

    Article  CAS  Google Scholar 

  62. Y. Wang, H. Chen, S. Dong, and E. Wang: Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors. J. Chem. Phys. 125, 044710 (2006).

    Article  CAS  Google Scholar 

  63. S.H. Lee, K.C. Bantz, N.C. Lindquist, S.H. Oh, and C.L. Haynes: Self-assembled plasmonic nanohole arrays. Langmuir 25, 13685 (2009).

    Article  CAS  Google Scholar 

  64. Z. Luo, W. Yang, A. Peng, Y. Ma, H. Fu, and J. Yao: Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy. J. Phys. Chem. A 113, 2467 (2009).

    Article  CAS  Google Scholar 

  65. T. Kang, I. Yoon, J. Kim, H. Ihee, and B. Kim: Au nanowire–Au nanoparticles conjugated system which provides micrometer size molecular sensors. Chemistry 16, 1351 (2010).

    Article  CAS  Google Scholar 

  66. T. Qiu, X.L. Wu, J.C. Shen, and P.K. Chu: Silver nanocrystal superlattice coating for molecular sensing by surface-enhanced Raman spectroscopy. Appl. Phys. Lett. 89, 131914 (2006).

    Article  CAS  Google Scholar 

  67. T. Qiu, W.J. Zhang, X.Z. Lang, Y.J. Zhou, T.J. Cui, and P.K. Chu: Controlled assembly of highly Raman-enhancing silver nanocap arrays templated by porous anodic alumina membranes. Small 5, 2333 (2009).

    Article  CAS  Google Scholar 

  68. M. Fan and A.G. Brolo: Silver nanoparticles self assembly as SERS substrates with near single molecule detection limit. Phys. Chem. Chem. Phys. 11, 7381 (2009).

    Article  CAS  Google Scholar 

  69. D.R. Ward, N.K. Grady, C.S. Levin, N.J. Halas, Y.P. Wu, P. Nordlander, and D. Natelson: Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 7, 1396 (2007).

    Article  CAS  Google Scholar 

  70. Q. Min, M.J.L. Santos, E.M. Girotto, A.G. Brolo, and R. Gordon: Localized Raman enhancement from a double-hole nanostructure in a metal film. J. Phys. Chem. C 112, 15098 (2008).

    Article  CAS  Google Scholar 

  71. M. Sackmann, S. Bom, T. Balster, and A. Materny: Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 38, 277 (2007).

    Article  CAS  Google Scholar 

  72. W.F. Nirode, G.L. Devault, M.J. Sepaniak, and R.O. Cole: On-column surface-enhanced Raman spectroscopy detection in capillary electrophoresis using running buffers containing silver colloidal solutions. Anal. Chem. 72, 1866 (2000).

    Article  CAS  Google Scholar 

  73. R.M. Connatser, M. Cochran, R.J. Harrison, and M.J. Sepaniak: Analytical optimization of nanocomposite surface-enhanced Raman spectroscopy/scattering detection in microfluidic separation devices. Electrophoresis 29, 1441 (2008).

    Article  CAS  Google Scholar 

  74. W.E. Smith, K. Faulds, and D. Graham: Quantitative surface-enhanced resonance Raman spectroscopy for analysis. Top. Appl. Phys. 103, 381 (2006).

    Article  CAS  Google Scholar 

  75. S.E. Bell and N.M. Sirimuthu: Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 37, 1012 (2008).

    Article  CAS  Google Scholar 

  76. K.R. Ackermann, T. Henkel, and J. Popp: Quantitative online detection of low-concentrated drugs via a SERS microfluidic system. ChemPhysChem 8, 2665 (2007).

    Article  CAS  Google Scholar 

  77. R. Tantra, R.J. Brown, and M.J. Milton: Strategy to improve the reproducibility of colloidal SERS. J. Raman Spectrosc. 38, 1469 (2007).

    Article  CAS  Google Scholar 

  78. C. McLaughlin, D. MacMillan, C. McCardle, and W.E. Smith: Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 74, 3160 (2002).

    Article  CAS  Google Scholar 

  79. D. Cialla, U. Hubner, H. Schneidewind, R. Moller, and J. Popp: Probing innovative microfabricated substrates for their reproducible SERS activity. ChemPhysChem 9, 758 (2008).

    Article  CAS  Google Scholar 

  80. M.J.A. Canada, A.R. Medina, J. Frank, and B. Lendl: Bead injection for surface enhanced Raman spectroscopy: Automated on-line monitoring of substrate generation and application in quantitative analysis. Analyst (Lond.) 127, 1365 (2002).

    Article  Google Scholar 

  81. A. Marz, K.R. Ackermann, D. Malsch, T. Bocklitz, and T.H. Popp: Towards a quantitative SERS approach-online monitoring of analytes in a microfluidic system with isotope-edited internal standards. J. Biophoton. 2, 232 (2009).

    Article  CAS  Google Scholar 

  82. J.H. Jung, J. Choo, D.J. Kim, and S. Lee: Quantitative determination of nicotine in a PDMS microfluidic channel using surface enhanced Raman spectroscopy. Bull. Korean Chem. Soc. 27, 277 (2006).

    Article  CAS  Google Scholar 

  83. S. Lee, J. Choi, L. Chen, B. Park, J.B. Kyong, G.H. Seong, J. Choo, Y. Lee, K.H. Shin, E.K. Lee, S.W. Joo, and K.H. Lee: Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal. Chim. Acta 590, 139 (2007).

    Article  CAS  Google Scholar 

  84. B. Bose, L. Motiwale, and K.V.K. Rao: DNA damage and G2/M arrest in Syrian hamster embryo cells during Malachite green exposure are associated with elevated phosphorylation of ERK1 and JNK1. Cancer Lett. 230, 260 (2005).

    Article  CAS  Google Scholar 

  85. A. Stammati, C. Nebbia, I. De Angelis, A.G. Albo, M. Carletti, C. Rebecchi, F. Zampaglioni, and M. Dacasto: Effects of malachite green (MG) and its major metabolite, leucomalachite green (LMG), in two human cell lines. Toxicol. In Vitro 19, 853 (2005).

    Article  CAS  Google Scholar 

  86. A. Huebner, M. Srisa-Art, D. Holt, C. Abell, F. Hollfelder, A.J. deMello, and J.B. Edel: Quantitative detection of protein expression in single cells using droplet microfluidics.: Chem. Commun. (Camb.) 12, 1218 (2007).

    Article  CAS  Google Scholar 

  87. M. Srisa-Art, A.J. deMello, and J.B. Edel: High-throughput DNA droplet assays using picoliter reactor volumes. Anal. Chem. 79, 6682 (2007).

    Article  CAS  Google Scholar 

  88. A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J.B. Edel, and A.J. deMello: Microdroplets: A sea of applications? Lab Chip 8, 1244 (2008).

    Article  CAS  Google Scholar 

  89. M. Srisa-Art, I.C. Bonzani, A. Williams, M.M. Stevens, A.J. deMello, and J.B. Edel: Identification of rare progenitor cells from human periosteal tissue using droplet microfluidics. Analyst (Lond.) 134, 2239 (2009).

    Article  CAS  Google Scholar 

  90. M. Srisa-Art, A.J. deMello, and J.B. Edel: High-throughput confinement and detection of single DNA molecules in aqueous microdroplets. Chem. Commun. (Camb.) 43, 6548 (2009).

    Article  CAS  Google Scholar 

  91. M. Srisa-Art, D.K. Kang, J. Hong, H. Park, R.J. Leatherbarrow, J.B. Edel, S.I. Chang, and A.J. deMello: Analysis of protein–protein interactions by using droplet-based microfluidics. ChemBioChem 10, 1605 (2009).

    Article  CAS  Google Scholar 

  92. K.R. Strehle, D. Cialla, P. Rosch, T. Henkel, M. Kohler, and J. Popp: A reproducible surface-enhanced Raman spectroscopy approach: Online SERS measurements in a segmented microfluidic system. Anal. Chem. 79, 1542 (2007).

    Article  CAS  Google Scholar 

  93. G. Wang, C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, and A.J. deMello: Surface-enhanced Raman scattering in nanoliter droplets: Towards high-sensitivity detection of mercury (II) ions. Anal. Bioanal. Chem. 394, 1827 (2009).

    Article  CAS  Google Scholar 

  94. C.G. Blatchford, J.R. Campbell, and J.A. Creighton: Plasma resonance-enhanced Raman-scattering by adsorbates on gold colloids: The effects of aggregation. Surf. Sci. 120, 435 (1982).

    Article  CAS  Google Scholar 

  95. O. Siiman, L.A. Bumm, R. Callaghan, C.G. Blatchford, and M. Kerker: Surface-enhanced Raman scattering by citrate on colloidal silver. J. Phys. Chem. 87, 1014 (1983).

    Article  CAS  Google Scholar 

  96. S.R. Emory, R.A. Jensen, T. Wenda, M. Han, and S.M. Nie: Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS. Faraday Discuss. 132, 249 (2006).

    Article  CAS  Google Scholar 

  97. A.D. McFarland, M.A. Young, J.A. Dieringer, and R.P. Van Duyne: Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279 (2005).

    Article  CAS  Google Scholar 

  98. M. Cyrankiewicz, T. Wybranowski, and S. Kruszewski: Study of SERS efficiency of metallic colloidal systems. J. Phys.: Conf. Ser. 79, 012013 (2007).

    Google Scholar 

  99. Y. Yang, S. Matsubara, M. Nogamia, and J. Shi: Controlling the aggregation behavior of gold nanoparticles. Mater. Sci. Eng., B 140, 172 (2007).

    Article  CAS  Google Scholar 

  100. A.M. Schwartzberg, C.D. Grant, A. Wolcott, C.E. Talley, T.R. Huser, R. Bogomolni, and J.Z. Zhang: Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J. Phys. Chem. B 108, 19191 (2004).

    Article  CAS  Google Scholar 

  101. J.D. Guingab, B. Lauly, B.W. Smith, N. Omenetto, and J.D. Winefordner: Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid. Talanta 74, 271 (2007).

    Article  CAS  Google Scholar 

  102. C.C. Busby and J.A. Creighton: Efficient gold and silver electrodes for surface enchanced Raman spectral studies of electrochemical systems: The behavior of pyridine and naphthalene adsorbed on roughened gold electrodes. J. Electroanal. Chem. 140, 379 (1982).

    Article  CAS  Google Scholar 

  103. M. Wang, M. Benford, N. Jing, G. Cote, and J. Kameoka: Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluid. Nanofluid. 6, 411 (2009).

    Article  CAS  Google Scholar 

  104. Y.S. Huh, A.J. Chung, B. Cordovez, and D. Erickson: Enhanced on-chip SERS based biomolecular detection using electrokinetically active microwells. Lab Chip 9, 433 (2008).

    Article  Google Scholar 

  105. L. Tong, M. Righini, M.U. Gonzalez, R. Quidantb, and M. Käll: Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. Lab Chip 9, 193 (2009).

    Article  CAS  Google Scholar 

  106. C. Lim, J. Hong, B.G. Chung, A.J. deMello, and J. Choo: Optofluidic platforms based on surface-enhanced Raman scattering. Analyst (Lond.) 135, 837 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was jointly supported by the National Natural Science Foundation of China under Grant No. 50801013, Natural Science Foundation of Jiangsu Province, China under Grant No. BK2009291, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 200802861065, Excellent Young Teachers Program of Southeast University, Hong Kong Research Grants Council (RGC) General Research Fund (GRF) No. CityU 112307, and City University of Hong Kong Strategic Research Grant (SRG) No. 7008009.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Teng Qiu or Paul K. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Y., Qiu, T., Zhang, W. et al. Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages. Journal of Materials Research 26, 170–185 (2011). https://doi.org/10.1557/jmr.2010.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.18

Navigation