Skip to main content

Advertisement

Log in

Pulsed laser induced self-organization by dewetting of metallic films

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Reliable and cost-effective techniques to process surface nanoscale metallic structures with controllable and complex nanomorphologies is important toward progress in technologies related to sensing, energy harvesting, information storage, and computing. Here we discuss how pulsed laser melting and the ensuing self-organization by dewetting of ultrathin films can be utilized to fabricate various nanomorphologies in a predictable manner. Ultrathin metal films (1–100 nm) on inert substrates like SiO2 are generally unstable, with their free energy resembling that of a spinodal system. The energy rate theory of self-organization, which is based on balancing the rate of thermodynamic free energy change to the rate of energy dissipation, predicts the appearance of characteristic length scales. This is borne out in experiments of nanosecond pulsed laser melting of a variety of metal films. We review this laser-based self-organization technique with various examples from the behavior of Ag and Co metals on SiO2 substrates. Specifically, film thickness and film roughness can be used to control dewetting length scales, whereas knowledge of the intermolecular forces responsible for the free energy of the system control the type of morphology. Furthermore, novel dewetting is observed that is attributable to nanoscale heating effects resulting from the thickness-dependent pulsed laser heating. These results help elucidate the basic mechanisms of pulsed laser induced dewetting of metal films, but they also provide potential routes for cost-effective nanomanufacturing of metallic surfaces for applications in sensing, energy harvesting, and information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427–556 (2006).

    Article  CAS  Google Scholar 

  2. K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. 107, 668–677 (2003).

    Article  CAS  Google Scholar 

  3. Y. Xia and J.N. Halas: Synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 30, 338 (2005).

    Article  CAS  Google Scholar 

  4. S. Maier, P.G. Kik, and H.A. Atwater: Observation of couple plasmon–polariton modes in Au nanoparticle chain waveguide of different length: Estimation of waveguide losses. Appl. Phys. Lett. 81, 1714–16 (2002).

    Article  CAS  Google Scholar 

  5. D.L. Leslie-Pelecky and R.D. Rieke: Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996).

    Article  CAS  Google Scholar 

  6. C. Kittel: Rev. Mod. Phys. 21, 541 (1949).

    Article  Google Scholar 

  7. C. Kittel: Phys. Rev. 70 965 (1946).

    Article  CAS  Google Scholar 

  8. J.B. González-Díaz, A. García-Martín, J.M. García-Martín, A. Cebollada, G. Armelles, B. Sepílveda, Y. Alaverdyan, and M. Káll: Plasmonic AU/CO/AU nanosandwiches with enhanced magneto-optical activity. Small. 4, 202–205 (2008).

    Article  CAS  Google Scholar 

  9. K. Drexler: Molecular engineering: An approach of the development of general capabilities for molecular manipulation. Nat. Acad. of Sci. 78, 5275–5278 (1981).

    Article  CAS  Google Scholar 

  10. K. Drexler and J.S. Foster: Synthetic tips. Nature 343, 600–604 (1990).

    Article  CAS  Google Scholar 

  11. H. Gleiter: Nanostructured materials: Basic concepts and microstructure. Acta. Mater. 48, 1–29 (2000).

    Article  CAS  Google Scholar 

  12. K. Inomata and Y. Saito: Spin-dependent tunneling through layered ferromagnetic nanoparticles. Appl. Phys. Lett. 73, 1143–1145 (1998).

    Article  CAS  Google Scholar 

  13. J. Stahl, M. Debe, and P. Coleman: Enhanced bioadsorption characteristics of a uniquely nanostructured thin film. J. Vac. Sci. Techno. A, 14, 1761–1764 (1996).

    Article  CAS  Google Scholar 

  14. D. Shtanski, S. Kulinich, E. Levashov, and J. Moore: Structure and physical–mechanical properties of nanostructured thin films. Phys. Solid. State. 45, 1177–1184 (2003).

    Article  CAS  Google Scholar 

  15. M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg: Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331 (1998).

    Article  CAS  Google Scholar 

  16. K. Willets and R.P. Van Duyne: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).

    Article  CAS  Google Scholar 

  17. M. Fleischmann, P.J. Hendra, and A. MacQuillan: Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–168 (1974).

    Article  CAS  Google Scholar 

  18. S.Y. Chou, P.R. Krauss, and L. Kong: J. Appl. Phys. 79, 6101 (1996).

    Article  CAS  Google Scholar 

  19. R.M.H. New, R.F.W. Pease, and R.L. White: J. Vac. Sci. Technol. B 12, 3196 (1994).

    Article  CAS  Google Scholar 

  20. P.R. Krauss, P.B. Fischer, and S.Y. Chou: J. Vac. Sci. Technol. B 12, 3639 (1994).

    Article  CAS  Google Scholar 

  21. S.Y. Chou, P.R. Krauss, and P.J. Renstrom: J. Vac. Sci. Technol. B 14, 4129 (1996).

    Article  CAS  Google Scholar 

  22. M. Todorovic, S. Schuttz, J. Wong, and A. Scherer: Appl. Phys. Lett. 74, 2516 (1999).

    Article  CAS  Google Scholar 

  23. M. Salerno, J.R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F.R. Aussenegg: Opto-Electron. Rev. 10, 217 (2002).

    Google Scholar 

  24. R.S. Molday and D. Mackenzie: J. Immunol. Methods 52, 353 (1982).

    Article  CAS  Google Scholar 

  25. A. Jordan, R. Scholz, P. Wust, H. Schirra, T. Schiestel, H. Schmidt, and R. Felix: J. Magn. Magn. Mater. 194, 185 (1999).

    Article  CAS  Google Scholar 

  26. F. Ross, J. Tersoff, and R. Tromp: Coarsening of self-assembled Ge quantum dots on Si(001). Phys. Rev. Lett. 80, 984–19 (1998).

    Article  CAS  Google Scholar 

  27. S. Kondo and R. Asal: A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376, 765–768 (1993).

    Article  Google Scholar 

  28. C. Favazza, R. Kalyanaraman, and R. Sureshkumar: Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17, 4229–42 (2006).

    Article  CAS  Google Scholar 

  29. A. Ashton, A. Brad Murray, and O. Arnault: Formation of coastline features by large-scale instabilities induced by high-angle waves. Nature, 414, 296–300 (2001).

    Article  CAS  Google Scholar 

  30. A. Vrij: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23–27 (1966).

    Article  Google Scholar 

  31. A. Vrij and J.T.G. Overbeek: Rupture of thin liquid films due to spontaneous fluctuations in thickness. J. Am. Chem. Soc. 90, 3074–30 (1968).

    Article  CAS  Google Scholar 

  32. G. Reiter: Phys. Rev. Lett. 68, 75 (1992).

    Article  CAS  Google Scholar 

  33. J-U. Thiele, L. Folks, M.F. Toney, and D.K. Weller: Perpendicular magnetic anisotropy and magnetic domain structure in sputtered epitaxial fept (001) l1[sub 0] films. J. Appl. Phys. 84, 5686–5692 (1998).

    Article  CAS  Google Scholar 

  34. T. Stange and D. Evans: Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 13, 4459–4465 (1997).

    Article  CAS  Google Scholar 

  35. U. Thiele, M.G. Velarde, and K. Neuffer: Dewetting: film rupture by nucleation in the spinodal regime. Phys. Rev. Lett. 87, 16104 (2001).

    Article  CAS  Google Scholar 

  36. A. Sharma and R. Khanna: Pattern formation in thin liquid films. Phys. Rev. Lett. 80,(1998).

  37. A. Sharma and E. Ruckenstein: J. Colloid Interface Sci. 106, 12 (1985).

    Article  Google Scholar 

  38. A. Sharma and E. Ruckenstein: Finite-amplitude instability of thin free and wetting films: prediction of lifetimes. Langmuir 2, 480–494 (1986).

    Article  CAS  Google Scholar 

  39. R. Pretorius, J. Harris, and M-A. Nicolet: Reaction of thin metal films with SiO2 substrates. Solid. State. Electron. 21, 667–675 (1978).

    Article  CAS  Google Scholar 

  40. L.H. Ho, T. Nguyen, J.C. Chang, B. Machesney, and P. Geiss: Evidence of Co/SiO2 reaction during rapid thermal annealing. Mater. Res. 8, 467–472 (1993).

    Article  CAS  Google Scholar 

  41. C. Favazza, R. Kalyanaraman, and R. Sureshkumar: Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys. 102, 104308 (2007).

    Article  CAS  Google Scholar 

  42. X. Hu, D. Cahill, and R. Averback: Nanoscale pattern formation in Pt thin films due to ion-beam-induced dewetting. Appl. Phys. Lett. 76, 3215–32 (2000).

    Article  CAS  Google Scholar 

  43. X. Hu, D.G. Cahill, and R.S. Averback: Dewetting and nanopattern formation of thin Pt films on SiO2 induced by ion beam irradiation. J. Appl. Phys., 89, 7777–7783, (2001).

    Article  CAS  Google Scholar 

  44. J. Bischof, M. Reimmuth, J. Boneberg, H. Herminghaus, T. Palberg, and P. Leiderer: In Proceedings of SPIE. 2777, 1996; p. 119

  45. S. Herminghaus, K. Jacobs, K. Mecke, J. Bischof, A. Fery, M. Ibn-Elhaj, and S. Schlagowski: Spinodal dewetting in liquid crystal and liquid metal films. Science, 282, 916–919 (1998).

    Article  CAS  Google Scholar 

  46. S.J. Henley, J.D. Carey, and S.R.P. Silva: Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B 72, 195408–I–195408–10 (2005).

  47. C. Favazza, J. Trice, A. Gangopadhyay, H. Garcia, R. Sureshkumar, and R. Kalyanaraman: Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater., 35, 1618–20 (2006).

    Article  CAS  Google Scholar 

  48. C. Favazza, J. Trice, H. Krishna, R. Kalyanaraman, and R. Sureshkumar: Laser-induced short- and long-range ordering of Co nanoparticles on SiO2. Appl. Phys. Lett. 88, 1531181–1531183 (2006).

    Article  CAS  Google Scholar 

  49. C. Favazza, J. Trice, R. Kalyanaraman, and R. Sureshkumars: Self-organized metal nanostructures through laser-interference driven thermocapillary convection. Appl. Phys. Lett. 91, 043105 (2007).

    Article  CAS  Google Scholar 

  50. J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, and R. Sureshkumar: Novel self-organization mechanism in ultrathin liquid films: Theory and experiment. Phys. Rev. Lett., 101, 017802 (2008).

    Article  CAS  Google Scholar 

  51. H. Krishna, C. Miller, L. Longstreth-Spoor, Z. Nussinov, A.K. Gangopadhyay, and R. Kalyanaraman: Unusual size-dependent magnetization in near hemispherical Co nanomagnets on sio2 from fast pulsed laser processing. J. Appl. Phys. 103, 073902 (2008).

    Article  CAS  Google Scholar 

  52. H. Krishna, J. Strader, A.K. Gangopadhyay, R. Kalyanaraman: Nanosecond laser-induced synthesis of nanoparticles with tailorable magnetic anisotropy, J. Mag. Mag. Mat., 323, p 356–362 (2011).

    Article  CAS  Google Scholar 

  53. J.W. Cahn: Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 62, 93–99 (1965).

    Article  Google Scholar 

  54. J. Israelachvili: Intermolecular and Surface Forces. (Academic Press, London, 1992).

    Google Scholar 

  55. V.A. Parsegians: Van der Waals Forces: A Handbook for Biologists, Chemists, Engineers, and Physicists (Cambridge University Press, 2006), New York.

    Google Scholar 

  56. H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, and R. Kalyanaraman: Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology, 21, (2010).

  57. A. Sharma: Relationship of thin film stability and morphology to macroscopic parameters of wetting in the apolar and polar systems. Langmuir, 9, 861–869 (1993).

    Article  CAS  Google Scholar 

  58. R. Seemann, S. Herminghaus, and K. Jacobs: Dewetting patterns and molecular forces. Phys. Rev. Lett. 86, 5534–5537 (2001).

    Article  CAS  Google Scholar 

  59. J. Becker, G. Grun, R. Seeman, H. Mantz, K. Jacobs, K. Mecke, and R. Blossey: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2, 59 (2003).

    Article  CAS  Google Scholar 

  60. J. Trice, R. Kalyanaraman, and R. Sureshkumar: Computational modeling of laser-induced self-organization in nanoscopic metal films for predictive nanomanufacturing. In Instrumentation, Metrology, and Standards for Nanomanufacturing M.T. Postek and J.A. Allgair, eds. Proceedings of SPIE, p 6648, SPIE, New York, 2007 p. 66480K.

  61. P. de Gennes, F. Brochard-Wyart, and D. Quere: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).

    Book  Google Scholar 

  62. H. Krishna, N. Shirato, C. Favazza, and R. Kalyanaraman: Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11, 8136–8143 (2009).

    Article  CAS  Google Scholar 

  63. P.-G. de Gennes: The dynamics of a spreading droplet. C.R. Acad. Paris, 298, 111–115 (1984).

    Google Scholar 

  64. L. Kondic: Instabilitites in gravity driven flow of thin fluid films. SIAM Rev. 45, 95–115 (2003).

    Article  Google Scholar 

  65. N. Shirato, H. Krishna, R. Kalyanaraman: Thermodynamic model for the dewetting instability in ultrathin films. J. Appl. Phys. 108, 024313 (2010).

    Article  CAS  Google Scholar 

  66. J. Trice, D. Thomas, C. Favazza, R. Sureshkumar, and R. Kalyanaraman: Investigation of laser-induced dewetting in nanoscopic Co films: Experiments and modeling of thermal behavior. Phys. Rev. B 75, 235439 (2007).

    Article  CAS  Google Scholar 

  67. G. Reiter: Unstable thin polymer films: Rupture and dewetting processes. Langmuir 9, 1344–1351 (1993).

    Article  CAS  Google Scholar 

  68. R. Xie, A. Karim, J. Douglas, C. Han, and R. Weiss: Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81, 1251–1254 (1998).

    Article  CAS  Google Scholar 

  69. R. Seemann, S. Herminghaus, and K. Jacobs: Gaining control of pattern formation of dewetting liquid films. J. Phys. Condensi. Matter. 13, 4925–4938 (2001).

    Article  CAS  Google Scholar 

  70. V. Mitlin: On dewetting conditions. Colloids Surf. A 89, 97–101 (1994).

    Article  CAS  Google Scholar 

  71. L. Maissel and R. Glang, eds: Handbook of Thin FilmTechnology, (McGraw–Hill, New York, 1970); Chap. 8.

    Google Scholar 

  72. O.S. Heavens: Optical Properties of Thin Solid. (Butterworth, New York, 1955); pp. 76–77.

    Google Scholar 

  73. C.L. Yaws, ed.: Chemical Properties Handbook (McGraw–Hill, New York, 1999).

    Google Scholar 

  74. H.M. Lu and Q. Jiang: Surface tension and its temperature coefficient for liquid metals. J. Phys. Chem. B 109, 15463–15468 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from the National Science Foundation (CAREER Grant DMI- 0449258, Grant NSF-CMMI-0855949, Grant NSF-DMR-0856707) and the Center for Materials Innovation at Washington University. The third author also acknowledges discussions with Dr. Trice, and Dr. Strader and Prof. Garcia, Prof. Sureshkumar, and Prof. Khenner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kalyanaraman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishna, H., Shirato, N., Favazza, C. et al. Pulsed laser induced self-organization by dewetting of metallic films. Journal of Materials Research 26, 154–169 (2011). https://doi.org/10.1557/jmr.2010.17

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.17

Navigation