Skip to main content
Log in

A versatile method for generating single DNA molecule patterns: Through the combination of directed capillary assembly and (micro/nano) contact printing

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

One of the challenges in the development of molecular scale devices is the integration of nano-objects or molecules onto desired locations on a surface. This integration comprises their accurate positioning, their alignment, and the preservation of their functionality. Here, we proved how capillary assembly in combination with soft lithography can be used to perform DNA molecular combing to generate chips of isolated DNA strands for genetic analysis and diagnosis. The assembly of DNA molecules is achieved on a topologically micropatterned polydimethylsiloxane stamp inducing almost simultaneously the trapping and stretching of single molecules. The DNA molecules are then transferred onto aminopropyltriethoxysilane-coated surfaces. In fact, this technique offers the possibility to tightly control the experimental parameters to direct the assembly process. This technique does not induce a selection in size of the objects, therefore it can handle complex solutions of long (tens of kbp) but also shorter (a few thousands of bp) molecules directly in solution to allow the construction of future one-dimensional nanoscale building templates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1.
FIG. 1.
FIG. 2.
SCHEME 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

References

  1. L.J. Kricka: Microchips, microarrays, biochips and nanochips: Personal laboratories for the 21st century. Clin. Chim. Acta 307, 219 (2001).

    Article  CAS  Google Scholar 

  2. N.C. Seeman: DNA in a material world. Nature 421, 427 (2003).

    Article  Google Scholar 

  3. C.M. Niemeyer: Progress in “engineering up” nanotechnology devices utilizing DNA as a construction material. Appl. Phys., A: Mater. Sci. Process. 68, 119 (1999).

    Article  CAS  Google Scholar 

  4. K. Lund, A.J. Manzo, N. Dabby, N. Michelotti, A. Johnson-Buck, J. Nangreave, S. Taylor, R. Pei, M.N. Stojanovic, N.G. Walter, E. Winfree, and H. Yan: Molecular robots guided by prescriptive landscapes. Nature 465, 206 (2010).

    Article  CAS  Google Scholar 

  5. D. Gerhold, T. Rushmore, and C.T. Caskey: DNA chips: Promising toys have become powerful tools. Trends Biochem. Sci. 24, 168 (1999).

    Article  CAS  Google Scholar 

  6. M. Cuzin: DNA chips: A new tool for genetic analysis and diagnostics. Transfus. Clin. Biol. 8, 291 (2001).

    Article  CAS  Google Scholar 

  7. E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph: DNA templated self-assembly of a conductive wire connecting two electrodes. Nature 391, 775 (1998).

    Article  CAS  Google Scholar 

  8. K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, and E. Braun: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 (2002).

    Article  CAS  Google Scholar 

  9. Z.X. Deng and C.D. Mao: DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett. 3, 1545 (2003).

    Article  CAS  Google Scholar 

  10. C.F. Monson and A.T. Woolley: DNA-templated construction of copper nanowires. Nano Lett. 3, 359 (2003).

    Article  CAS  Google Scholar 

  11. K. Nguyen, M. Monteverde, A. Filoramo, L. Goux-Capes, S. Lyonnais, P. Jegou, P. Viel, M. Goffman, and J-P. Bourgoin: Synthesis of thin and highly conductive DNA-based palladium nanowires. Adv. Mater. 20, 1099 (2008).

    Article  CAS  Google Scholar 

  12. J.M. Köhler, A. Csáki, J. Reichert, R. Möller, W. Straube, and W. Fritzsche: Selective labeling of oligonucleotide monolayers by metallic nanobeads for fast optical readout of DNA-chips. Sens. Actuators B 76, 166 (2001).

    Article  Google Scholar 

  13. D. Bensimon, A. Bensimon, and F. Heslot: Process for aligning, adhering and stretching nucleic acid strands on a support surface by passage through a meniscus. U.S. Patent No. 5 840 862 (1998).

    Google Scholar 

  14. D. Bensimon, A.J. Simon, V. Croquette, and A. Bensimon: Stretching DNA with a receding meniscus: Experiments and models. Phys. Rev. Lett. 74, 4754 (1995).

    Article  CAS  Google Scholar 

  15. A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot, and D. Bensimon: Alignment and sensitive detection of DNA by a moving interface. Science 265, 2096 (1994).

    Article  CAS  Google Scholar 

  16. Y.L. Lyubchenko, A.A. Gall, L.S. Shlyakhtenko, R.E. Harrington, B.L. Jacobs, S.M. Oden, and P.I. Lindsay: Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dyn. 10(3), 589 (1992).

    Article  CAS  Google Scholar 

  17. J. Vesenka, M. Guthold, C.L. Tang, D. Keller, E. Delaine, and C. Bustamante: Substrate preparation for reliable imaging of DNA molecules with scanning force microscope. Ultramicroscopy 42 (2), 1243 (1992).

    Article  Google Scholar 

  18. C. Bustamante, J. Vesenka, C.L. Tang, W. Rees, M. Gothold, and R. Keller: Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31(1), 22 (1992).

    Article  CAS  Google Scholar 

  19. T. Thundat, D.P. Allison, R.J. Warmack, G.M. Brown, K.B. Jacobson, J.J. Schrick, and T.L. Ferrell: Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc. 6(4), 911 (1992).

    CAS  Google Scholar 

  20. N. Kaji, Y. Tezuka, Y. Takamura, M. Ueda, T. Nishimoto, H. Nakanishi, Y. Horiike, and Y. Baba: Separation of long DNA molecules by quartz nanopillar chips under a direct current electric field. Anal. Chem. 76(1), 15 (2004).

    Article  CAS  Google Scholar 

  21. G. Maubach, A. Csaki, R. Seidel, M. Mertig, W. Pompe, D. Born, and W. Fritzsche: Controlled positioning of one individual DNA molecule in an electrode setup based on self-assembly and microstructuring. Nanotechnology 14, 546 (2003).

    Article  CAS  Google Scholar 

  22. M. Washizu and O. Kurosawa: Electrostatic manipulation of DNA in microfabricated structures. IEEE Trans. Ind. Appl. 26(6), 1165 (1990).

    Article  CAS  Google Scholar 

  23. A. Wolff, C. Leiterer, A. Csaki, and W. Fritzsche: Dielectrophoretic manipulation of DNA in microelectrode gaps for single-molecule constructs. Front. Biosci. 13, 6834 (2008).

    Article  CAS  Google Scholar 

  24. C.A.P. Petit and J.D. Carbeck: Combing of molecules in microchannels (COMMIC): A method for micropatterning and orienting molecules of DNA on a surface. Nano Lett. 3, 1141 (2003).

    Article  CAS  Google Scholar 

  25. J. Opitz, F. Braun, R. Seidel, W. Pompe, B. Voit, and M. Mertig: Site-specific binding and stretching of DNA molecules at UV-light patterned aminoterpolymer films. Nanotechnology 15, 717 (2004).

    Article  CAS  Google Scholar 

  26. M. Gad, S. Sugiyama, and T. Ohtani: Method for patterning stretched DNA molecules on mica surfaces by soft lithography. J. Biomol. Struct. Dyn. 2, 387 (2003).

    Article  Google Scholar 

  27. P. Björk, S. Holmström, and O. Inganäs: Soft lithographic printing of patterns of stretched DNA and DNA/electronic polymer wires by surface-energy modification and transfer. Small 8, 1068 (2006).

    Article  Google Scholar 

  28. H. Nakao, H. Shiigi, Y. Yamamoto, S. Tokonami, T. Nagaoka, S. Sugiyama, and T. Ohtani: Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett. 3, 1391 (2003).

    Article  CAS  Google Scholar 

  29. H. Nakao, M. Gad, S. Sugiyama, K. Otobe, and T. Ohtani: Transfer-printing of highly aligned DNA nanowires. JACS 125, 7162 (2003).

    Article  CAS  Google Scholar 

  30. J. Guan and L.J. Lee: Generating highly ordered DNA nanostrand arrays. PNAS. 102, 18321 (2005).

    Article  CAS  Google Scholar 

  31. L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf: Controlled particle placement through convective and capillary assembly. Langmuir 23, 11513 (2007).

    Article  CAS  Google Scholar 

  32. Y. Xia and G.M. Whitesides: Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).

    Article  CAS  Google Scholar 

  33. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N.D. Spencer, and H. Wolf: Nanoparticle printing with single particle resolution. Nat. Nanotechnol. 2, 570 (2007).

    Article  CAS  Google Scholar 

  34. D.E. Smith, T.T. Perkins, and S. Chu: Dynamical scaling of DNA diffusion coefficients. Macromolecules 29, 1372 (1996).

    Article  CAS  Google Scholar 

  35. T. Perkins, D. Smith, R. Larson, and S. Chu: Stretching of a single tethered polymer in a uniform flow. Science 268, 83 (1995).

    Article  CAS  Google Scholar 

  36. J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, and R.H. Austin: The dynamics of genomic-length DNA molecules in 100 nm channels. PNAS. 101, 10979 (2004).

    Article  CAS  Google Scholar 

  37. E.V. Armbrust, J.A. Berges, C. Bowler, B.R. Green, D. Martinez, N.H. Putnam, S. Zhou, A.E. Allen, K.E. Apt, M. Bechner, M.A. Brzezinski, B.K. Chaal, A. Chiovitti, A.K. Davis, M.S. Demarest, J.C. Detter, T. Glavina, G. Goodstein, M.Z. Hadi, U. Hellsten, M. Hildebrand, B.D. Jenkins, J. Jurka, V.V. Kapitonov, N. Kroger, W.W.Y. Lau, T.W. Lane, F.W. Larimer, J.C. Lippmeier, S. Lucas, M. Medina, A. Montsant, M. Obornik, M.S. Parker, B. Palenik, G.J. Pazour, P.M. Richardson, T.A. Rynearson, M.A. Saito, D.C. Schwartz, K. Thamatrakoln, K. Valentin, A. Vardi, F.P. Wilkerson, and D.S. Rokhsar: The genome of the diatom Thalassiosira Pseudonana: Ecology, evolution, and metabolism. Science 306, 79 (2004).

    Article  CAS  Google Scholar 

  38. E.T. Dimalanta, A. Lim, R. Runnheim, C. Lamers, C. Churas, D.K. Forrest, J.J. de Pablo, M.D. Graham, S.N. Coppersmith, S. Goldstein, and D.C. Schwartz: A microfluidic system for large DNA molecule arrays. Anal. Chem. 76, 5293 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the EC-funded project NaPa (Contract No. NMP4-CT-2003-500120). We thank the “Région Midi-Pyrénées” council, and the “Institut des Technologies Avancées en sciences du Vivant (ITAV)” for their financial support. We also thank Jean-Marie François and his research group, especially Marie-Ange Teste from the “Engineering of Biological Systems and Process Laboratory”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline Cerf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerf, A., Dollat, X., Chalmeau, J. et al. A versatile method for generating single DNA molecule patterns: Through the combination of directed capillary assembly and (micro/nano) contact printing. Journal of Materials Research 26, 336–346 (2011). https://doi.org/10.1557/jmr.2010.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.12

Navigation