Skip to main content
Log in

Preparation of CuIn(SxSe1-x)2 thin films with tunable band gap by controlling sulfurization temperature of CuInSe2

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, polycrystalline CuIn(SxSe1-x)2 thin films with tunable x and Eg (band gap) values were prepared by controlling the sulfurization temperature (T) of CuInSe2 thin films. X-ray diffraction indicated the CuIn(SxSe1-x)2 films exhibited a homogeneous chalcopyrite structure. When T increases from 150 to 500 °C, x increases from 0 to 1, and Eg increases from 0.96 to 1.43 eV. The relations between x and Eg and the sulfurization process of CuIn(SxSe1-x)2 thin films have been discussed. This work provides an easy and low-cost technique for preparing large area absorber layers of solar cell with tunable Eg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.O. Adurodija, J. Song, I.O. Asia, and K.H. Yoon: Formation of CuIn(S,Se)2 thin film by thermal diffusion of sulfur and selenium vapors into Cu-In alloy within a closed graphite container Sol. Enercv Mater. Sol. Cells 58, 287 (1999).

    CAS  Google Scholar 

  2. M. Engelmann, B.E. McCandless, and R.W. Birkmire: Formation and analysis of graded CuIn(Se1-ySy)2 films Thin Solid Films 387, 14(2001).

    CAS  Google Scholar 

  3. E.P. Zaretskaya, V.F. Gremenok, V.B. Zalesski, K. Bente, S. Schorr, and S. Zukotynski: Properties of Cu(In,Ga)(S,Se)2 thin films prepared by selenization/sulfurization of metallic alloys Thin Solid Films 515, 5848 (2007).

    CAS  Google Scholar 

  4. M.A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon, and R. Noufi: Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells Pros. Photovoltaics Res. Appl. 7, 311 (1999).

    CAS  Google Scholar 

  5. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi: 199%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Pros. Photovoltaics Res. Appl. 16, 235 (2008).

    CAS  Google Scholar 

  6. T. Yamaguchi, T. Naoyama, H.S. Lee, A. Yoshida, T. Kobata, S. Niiyama, and T. Nakamura: Preparation of CuIn(S,Se)2 thin films by thermal crystallization in sulfur and selenium atmosphere J. Phys. Chem. Solids 64, 1831 (2003).

    CAS  Google Scholar 

  7. S. Shirakata, T. Terasako, and T. Kariya: Properties of Culn (SxSe1_x)2 polycrystalline thin films prepared by chemical spray pyrolysis J. Phys. Chem. Solids 66, 1970 (2005).

    CAS  Google Scholar 

  8. K.S. Ramaiah and V.S. Raja: AES and XPS analyses of Culn (S1_xSex) thin films grown by spray pyrolysis technique Scr. Mater. 44, 771 (2001).

    CAS  Google Scholar 

  9. S. Chavhan and R. Sharma: Growth, structural and optical properties of non-stoichiometric CuIn(S1_xSex) thin films deposited by solution growth technique for photovoltaic application J. Phys. Chem. Solids 67, 767 (2006).

    CAS  Google Scholar 

  10. S. Kuranouchi and T. Nakazawa: Study of one-step electrodepo-sition condition for preparation of CuIn(Se,S)2 thin films Sol. Enercv Mater. Sol. Cells 50, 31 (1998).

    CAS  Google Scholar 

  11. Z. Djebbour, A.M. Dubios, A. Darga, D. Mencaraglia, C. Bazin, J.P. Connolly, J-F. Guillemoles, D. Lincot, B. Canava, and A. Etcheberry: Comparison of optical and electrical gap of electrodeposited CuIn(S,Se)2 determined by spectral photo response and I-V-T measurements Thin Solid Films 515, 6233 (2007).

    CAS  Google Scholar 

  12. O. Roussel, M. Lamirand, N. Naghavi, J.F. Guillemoles, B. Canava, and A. Etcheberry: Interfacial chemistry control in thin film solar cells based on electrodeposited CuIn(S,Se)2Thin Solid Films 515, 6123 (2007).

    CAS  Google Scholar 

  13. T. Ohashi, K. Inakoshi, Y. Hashimoto, and K. Ito: Preparation of CuIn(SxSe1_x)2 thin films by sulfurization and selenization Sol. Enercv Mater. Sol. Cells 50, 37 (1998).

    CAS  Google Scholar 

  14. S. Bandyopadhyaya, S. Roy, S. Chaudhuri, and A.K. Pal: Culn (SxSe1_x)2 films prepared by graphite box annealing of In/Cu stacked elemental layers Vacuum 62, 61 (2001).

    CAS  Google Scholar 

  15. J. Bekker, V. Alberts, P.W.R. Leitch, and J.R. Botha: Properties of CuIn(Se,S)2 thin films prepared by two-step growth processes Thin Solid Films 431–432. 116 (2003).

    Google Scholar 

  16. V. Izquierdo-Roca, X. Fontane, J. Alvarez-Garcia, L. Calvo-Barrio, A. Perez-Rodriguez, J.R. Morante, C.M. Ruiz, E. Saucedo, and V. Bermudez: Electrochemical synthesis of CuIn(S,Se)2 alloys with graded composition for high efficiency solar cells Appl. Phys. Lett. 94, 061915 (2009).

    Google Scholar 

  17. M. Turcu, I.M. Kotschau, and U. Rau: Band alignments in the Cu (In,Ga)(S,Se)2 alloy system determined from deep-level defect energies Arml. Phys. A 73, 769 (2001).

    CAS  Google Scholar 

  18. S. Wei and A. Zunger: Band offsets and optical bowings of chal-copyrites and Zn-based II-VI alloys J. Appl. Phys. 78, 3846 (1995).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuliang Dua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Cheng, G., Hu, B. et al. Preparation of CuIn(SxSe1-x)2 thin films with tunable band gap by controlling sulfurization temperature of CuInSe2. Journal of Materials Research 25, 2426–2429 (2010). https://doi.org/10.1557/jmr.2010.0304

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0304

Navigation