Skip to main content
Log in

Improved dehydrogenation of LiBH4 supported on nanoscale SiO2 via liquid phase method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A wet loading method was developed to produce nano-sized LiBH4 combined with nano- SiO2 templates. The multicomponent LiBH4/SiO2 material synthesized by the wet method has been found to dehydrogenate at much lower temperatures than the pure LiBH4, as well as LiBH4/SiO2 mixtures prepared by ball milling. For example, the onset of dehydrogenation was decreased to about 200 °C for a wet-treated LiBH4/SiO2 mixture with a mass ratio of 1:1, and the majority of the hydrogen could be released below 350°C. The improved dehydrogenation of the wet-treated LiBH4/SiO2 mixtures can be attributed to the destabilization of SiO2, resulting in the formation of lithium metasilicate (Li2SiO3) upon heating, and the confinement of LiBH4 to form nanoscale particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, Ph. Mauron, and C. Emmenenegger: Hydrogen storage properties of LiBH, J. Alloys Compd. 356–357, 515 (2003).

    Google Scholar 

  2. A. Züttel, P. Wenger, S. Rentsch, P. Sudan, P. Mauron, and C. Emmenegger: LiBH4 a new hydrogen storage material J. Power Sources 118, 1 (2003).

    Google Scholar 

  3. F.E. Pinkerton, G.P. Meisner, M.S. Meyer, M.P. Balogh, and M.D. Kundrat: Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8J. Phys. Chem. B 109, 6 (2005).

    CAS  Google Scholar 

  4. S. Orimoa, Y. Nakamoria, G. Kitaharaa, K. Miwab, N. Ohbab, S. Towatab, and A. Ziittel: Dehydriding and rehydriding reactions of LiBH, J. Alloys Compd. 404-406, 427 (2005).

    Google Scholar 

  5. O. Friedrichs, F. Buchter, A. Borgschulte, A. Remhof, C.N. Zwicky, Ph. Mauron, M. Bielmann, and A. Ziittel: Direct synthesis of Li[BH4] and Li[BD4] from the elements Acta Mater. 55, 949 (2008).

    Google Scholar 

  6. J. Xu, X.B. Yu, Z.Q. Zou, Z.L. Li, Z. Wu, D.L. Akins, and H. Yang: Enhanced dehydrogenation of LiBH4, catalyzed by carbon-supported Pt nanoparticles Chem. Commun. (Camb.) 44, 5740 (2008).

    Google Scholar 

  7. X.D. Kang, P. Wang, L.P. Ma, and H.M. Cheng: Reversible hydrogen storage in LiBH4 destabilized by milling with Al Appl. Phys. A 89, 963 (2007).

    CAS  Google Scholar 

  8. X.B. Yu, D.M. Grant, and G.S. Walker: Low-temperature dehydrogenation of LiBFL, through destabilization with TiO2J. Phys. Chem. C 112, 11059 (2008).

    CAS  Google Scholar 

  9. L. Mosegaard, B. Möller, J.E. Jiirgensen, Y. Filinchuk, Y. Cerenius, J.C. Hanson, E. Dimasi, F. Besenbacher, and T.R. Jensen: Reactivity of LiBFL,: In situ synchrotron radiation powder x-ray diffraction study J. Phys. Chem. C 112, 1299 (2008).

    CAS  Google Scholar 

  10. X.B. Yu, T. Dou, Z. Wu, B.J. Xia, and J. Shen: Electrochemical hydrogen storage in Ti-V-based alloys surface-modified with carbon nanoparticles Nanotechnology 17, 268 (2006).

    Article  CAS  Google Scholar 

  11. U. Bosenberg, S. Doppiu, L. Mosegaard, G. Barkhordarian, N. Eigen, A. Borgschulte, T.R. Jensen, Y. Cerenius, O. Gutfleisch, T. Klassen, M. Dornheim, and R. Bormann: Hydrogen sorption properties of MgH2-LiBH4 composites Acta Mater. 55, 3951 (2007).

    Google Scholar 

  12. J.J. Vajo and S.L. Skeith: Reversible storage of hydrogen in destabilized LiBH4J. Phys. Chem. B 109, 3719 (2005).

    CAS  Google Scholar 

  13. F. Gross, J.J. Vajo, L.S. Van Atta, and G.L. Olson: Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds J. Phys. Chem. C 112, 5651 (2008).

    CAS  Google Scholar 

  14. H.E. Kissinger: Reaction kinetics in differential thermal analysis Anal. Chem. 29, 1702 (1957).

    CAS  Google Scholar 

  15. M. Wagemaker, P.J.H. Borghols, and F.M. Mulder: Large impact of particle size on insertion reactions: A case for anatase LixTiO2J. Am. Chem. Soc. 129, 4323 (2007).

    CAS  Google Scholar 

  16. A.Y. Badmos and H.K.D.H. Bhadeshia: The evolution of solutions: A thermodynamic analysis of mechanical alloying Metall. Mater. Trans. A 11, 2189 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. B. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X.Y., Guo, Y.H., Gao, L. et al. Improved dehydrogenation of LiBH4 supported on nanoscale SiO2 via liquid phase method. Journal of Materials Research 25, 2415–2421 (2010). https://doi.org/10.1557/jmr.2010.0301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0301

Navigation