Skip to main content
Log in

Nanoscale strength distribution in amorphous versus crystalline metals

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Low-load nanoindentation can be used to assess not only the plastic yield point, but the distribution of yield points in a material. This paper reviews measurements of the so-called nanoscale strength distribution (NSD) on two classes of materials: crystals and metallic glasses. In each case, the yield point has a significant spread (10-50% of the mean normalized stress), but the origins of the distribution are shown to be very different in the two materials classes. In crystalline materials the NSD can arise from thermal fluctuations and is attended by significant rate and temperature dependence. In metallic glasses well below their glass-transition temperature, the NSD is reflective of fluctuations in the sampled structure and is not very sensitive to rate or temperature. Computer simulations using shear transformation zone dynamics are used to separate the effects of thermal and structural fluctuations in metallic glasses, and support the latter as dominating the NSD of those materials at low temperatures. Finally, the role of the NSD as a window on structural changes due to annealing or prior deformation is discussed as a direction for future research on metallic glasses in particular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.F. Bahr and G. Vasquez: Effect of solid solution impurities on dislocation nucleation during nanoindentation. J. Mater. Res. 20, 1947 (2005).

    Article  CAS  Google Scholar 

  2. D.F. Bahr, D.E. Wilson, and D.A. Crowson: Energy considerations regarding yield points during indentation. J. Mater. Res. 14, 2269 (1999).

    Article  CAS  Google Scholar 

  3. A.C. Lund, A.M. Hodge, and C.A. Schuh: Incipient plasticity during nanoindentation at elevated temperatures. Annl. Phys. Lett. 85, 1362 (2004).

    CAS  Google Scholar 

  4. J.K. Mason, A.C. Lund, and C.A. Schuh: Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006).

    Article  CAS  Google Scholar 

  5. T.A. Michalske and J.E. Houston: Dislocation nucleation at nanoscale mechanical contacts. Acta Mater. 46, 391 (1998).

    Article  CAS  Google Scholar 

  6. S. Suresh, T.G. Nieh, and B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  7. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, 16057 (1997).

    Google Scholar 

  8. H. Bei, Z.P. Lu, and E.P. George: Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. Phys. Rev. Lett. 93, 125504 (2004).

    Article  CAS  Google Scholar 

  9. C.E. Packard and C.A. Schuh: Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55, 5348 (2007).

    CAS  Google Scholar 

  10. W.J. Wright, R. Saha, and W.D. Nix: Deformation mechanisms of the Zr40Ti14Ni10Cu12Be24 bulk metallic glass. Mater. Trans. 42, 642 (2001).

    CAS  Google Scholar 

  11. Y.F. Shi and M.L. Falk: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55, 4317 (2007).

    CAS  Google Scholar 

  12. E.R. Homer and C.A. Schuh: Mesoscale modeling of amorphous metals by shear transformation zone dynamics. Acta Mater. 57, 2823 (2009).

    CAS  Google Scholar 

  13. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).

    CAS  Google Scholar 

  14. K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67, 104105 (2003).

    Google Scholar 

  15. O. Franke, K. Durst, and M. Goken: Nanoindentation investigations to study solid solution hardening in Ni-based diffusion couples. J. Mater. Res. 24, 1127 (2009).

    CAS  Google Scholar 

  16. O. Franke, K. Durst, and M. Goken: Microstructure and local mechanical properties of Pt-modified nickel aluminides on nickel-base superalloys after fhermo-mechanical fatigue. Mater. Sci. Eng., A 467, 15 (2007).

    Google Scholar 

  17. K. Tai, M. Dao, S. Suresh, A. Palazoglu, and C. Ortiz: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 454 (2007).

    CAS  Google Scholar 

  18. C.A. Tweedie, D.G. Anderson, R. Langer, and K.J. Van Vliet: Combinatorial material mechanics: High-throughput polymer synthesis and nanomechanical screening. Adv. Mater. 17, 2599 (2005).

    CAS  Google Scholar 

  19. G. Constantinides, K.S.R. Chandran, F.J. Ulm, and K.J. Van Vliet: Grid indentation analysis of composite microstructure and mechanics: Principles and validation. Mater. Sci. Ens.. A 430, 189 (2006).

    Google Scholar 

  20. J.C. Zhao, M.R. Jackson, L.A. Peluso, and L.N. Brewer: A diffusion-multiple approach for mapping phase diagrams, hardness, and elastic modulus. JOM 54, 42 (2002).

    CAS  Google Scholar 

  21. C.A. Schuh and A.C. Lund: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004).

    CAS  Google Scholar 

  22. C.A. Schuh, J.K. Mason, and A.C. Lund: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).

    CAS  Google Scholar 

  23. C.E. Packard, E.R. Homer, N. Al-Aqeeli, and C.A. Schuh: Cyclic hardening of metallic glasses under Hertzian contacts: Experiments and STZ dynamics simulations. Philos. Mas. 90, 1373 (2010).

    CAS  Google Scholar 

  24. C.E. Packard, L.M. Witmer, and C.A. Schuh: Hardening of a metallic glass during cyclic loading in the elastic range. Appl. Phys. Lett. 92, 171911 (2008).

    Google Scholar 

  25. A.C. Fischer-Cripps: Introduction to Contact Mechanics (Springer, New York, 2000).

    Google Scholar 

  26. H. Hertz: Miscellaneous Papers, translated by D.E. Jones and G.A. Schott (Macmillan, London, 1896).

  27. P.C. Wo, L. Zuo, and A.H.W. Ngan: Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J. Mater. Res. 20, 489 (2005).

    CAS  Google Scholar 

  28. K.V. Rajulapati, M.M. Biener, J. Biener, and A.M. Hodge: Temperature dependence of the plastic flow behavior of tantalum. Philos. Mac. Lett. 90, 35 (2010).

    CAS  Google Scholar 

  29. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    CAS  Google Scholar 

  30. M.M. Biener, J. Biener, A.M. Hodge, and A.V. Hamza: Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B 76, 165422 (2007).

    Article  CAS  Google Scholar 

  31. C.A. Schuh and T.G. Nieh: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).

    Article  CAS  Google Scholar 

  32. K. Durst, B. Backes, O. Franke, and M. Goken: Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006).

    Article  CAS  Google Scholar 

  33. E.K. Njeim and D.F. Bahr: Atomistic simulations of nanoindentation in the presence of vacancies. Scr. Mater. 62, 598 (2010).

    Article  CAS  Google Scholar 

  34. S. Shim, H. Bei, M.K. Miller, G.M. Pharr, and E.P. George: Effects of focused-ion-beam milling on the compressive behavior of directionally solidified micropillars and the nanoindentation response of an electropolished surface. Acta Mater. 57, 503 (2009).

    Article  CAS  Google Scholar 

  35. B. Moser, J. Kuebler, H. Meinhard, W. Muster, and J. Michler: Observation of instabilities during plastic deformation by in-situ SEM indentation experiments. Adv. Ens. Mater. 7, 388 (2005).

    Article  CAS  Google Scholar 

  36. B.G. Yoo, J.Y. Kim, and J.I. Jang: Influence of indenter geometry on the deformation behavior of Zr60Cu30Al10 bulk metallic glass during nanoindentation. Mater. Trans. 48, 1765 (2007).

    Article  CAS  Google Scholar 

  37. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  38. L. Wang, S.X. Song, and T.G. Nieh: Assessing plastic shear resistance of bulk metallic glasses under nanoindentation. Appl. Phys. Lett. 92, 3 (2008).

    Google Scholar 

  39. B. Yang and T.G. Nieh: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 (2007).

    Article  CAS  Google Scholar 

  40. A.C. Fischer-Cripps: Nanoindentation (Springer, New York, 2002).

    Google Scholar 

  41. C.A. Schuh, T.G. Nieh, and Y. Kawamura: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17, 1651 (2002).

    CAS  Google Scholar 

  42. N. Li, L. Liu, Q. Chen, J. Pan, and K.C. Chan: The effect of free volume on the deformation behaviour of a Zr-based metallic glass under nanoindentation. J. Phys. D: Appl. Phys. 40, 6055 (2007).

    CAS  Google Scholar 

  43. Y. Liu, T. Zhang, B. Wei, D. Xing, W. Li, and L. Zhang: Effect of structural relaxation on deformation behaviour of Zr-based metallic glass. Chin. Phys. Lett. 23, 1868 (2006).

    CAS  Google Scholar 

  44. B. Yang, J. Wadsworth, and T.G. Nieh: Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation. Appl. Phys. Lett. 90, 061911 (2007).

    Google Scholar 

  45. K. Saksl, H. Franz, P. Jovari, K. Klementiev, E. Welther, A. Ehnes, J. Saida, A. Inoue, and J.Z. Jiang: Evidence of icosahedral short-range order in Zr70Cu30 and Zr70Cu29Pdi metallic glasses. Appl. Phys. Lett. 83, 3924 (2003).

    CAS  Google Scholar 

  46. J. Sietsma and B.J. Thijsse: An investigation of universal medium range order in metallic glasses. J. Non-Cryst. Solids 135, 146 (1991).

    CAS  Google Scholar 

  47. D.B. Miracle, T. Egami, K.M. Flores, and K.F. Kelton: Structural aspects of metallic glasses. MRS Bull. 32, 629 (2007).

    CAS  Google Scholar 

  48. K.M. Flores, E. Sherer, A. Bharathula, H. Chen, and Y.C. Jean: Sub-nanometer open volume regions in a bulk metallic glass investigated by positron annihilation. Acta Mater. 55, 3403 (2007).

    CAS  Google Scholar 

  49. K.M. Flores, B.P. Kanungo, S.C. Glade, and P. Asoka-Kumar: Characterization of plasticity-induced structural changes in a Zr-based bulk metallic glass using positron annihilation spectroscopy. J. Non-Crvst. Solids 353, 1201 (2007).

    CAS  Google Scholar 

  50. A.S. Argon: Plastic-deformation in metallic glasses. Acta Metall. 22, 47 (1979).

    Google Scholar 

  51. F. Spaepen: Microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. Mater. 25, 407 (1977).

    CAS  Google Scholar 

  52. J.S. Langer: Shear-transformation-zone theory of deformation in metallic glasses. Scr. Mater. 54, 375 (2006).

    CAS  Google Scholar 

  53. A.S. Argon and H.Y. Kuo: Free-energy spectra for inelastic deformation of 5 metallic-glass alloys. J. Non-Crvst. Solids 37, 241 (1980).

    CAS  Google Scholar 

  54. D. Rodney and C. Schuh: Distribution of thermally activated plastic events in a flowing glass. Phys. Rev. Lett. 102, 235503 (2009).

    Google Scholar 

  55. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    CAS  Google Scholar 

  56. D. Klaumunzer, R. Maass, F.H. Dalla Torre, and J.F. Loffler: Temperature-dependent shear band dynamics in a Zr-based bulk metallic glass. ADDI. Phys. Lett. 96, 061901 (2010).

    Google Scholar 

  57. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    CAS  Google Scholar 

  58. C.E. Packard, J. Schroers, and C.A. Schuh: In situ measurements of surface tension-driven shape recovery in a metallic glass. Scr. Mater. 60, 1145 (2009).

    CAS  Google Scholar 

  59. N. Nishiyama, A. Inoue, and J.Z. Jiang: Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region. Appl. Phys. Lett. 78, 1985 (2001).

    CAS  Google Scholar 

  60. W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    CAS  Google Scholar 

  61. E.R. Homer, D. Rodney, and C.A. Schuh: Kinetic Monte Carlo study of activated states and correlated shear-transformation-zone activity during the deformation of an amorphous metal. Phys. Rev. B 81, 064204 (2010).

    Google Scholar 

  62. E.R. Homer and C.A. Schuh: Three-dimensional shear transformation zone dynamics model for amorphous metals. Modell. Simul. Mater. Sci. Em. 18, 065009 (2010).

    Google Scholar 

  63. A. Slipenyuk and J. Eckert: Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass. Scr. Mater. 50, 39 (2004).

    CAS  Google Scholar 

  64. A. Vandenbeukel and J. Sietsma: The glass-transition as a free-volume related kinetic phenomenon. Acta Metall. Mater. 38, 383 (1990).

    CAS  Google Scholar 

  65. U. Ramamurty, M.L. Lee, J. Basu, and Y. Li: Embrittlement of a bulk metallic glass due to low-temperature annealing. Scr. Mater. 47, 107 (2002).

    CAS  Google Scholar 

  66. J.J. Lewandowski, W.H. Wang, and A.L. Greer: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mas. Lett. 85, 77 (2005).

    CAS  Google Scholar 

  67. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, and K. Higashi: Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension. Scr. Mater. 46, 43 (2002).

    CAS  Google Scholar 

  68. X. Hu, S.C. Ng, Y.P. Feng, and Y. Li: Glass forming ability and insitu composite formation in Pd-based bulk metallic glasses. Acta Mater. 51, 561 (2003).

    CAS  Google Scholar 

  69. J. Shen, Q.J. Chen, J.F. Sun, H.B. Fan, and G. Wang: Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy. Appl. Phys. Lett. 86, 151907 (2005).

    Google Scholar 

  70. J.T. Trenkle, C.E. Packard, and C.A. Schuh: Hot nanoindentation in inert environments. Rev. Sci. Instrum. 81, 073901 (2010).

    Article  CAS  Google Scholar 

  71. C.A. Schuh, C.E. Packard, and A.C. Lund: Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21, 725 (2006).

    Article  CAS  Google Scholar 

  72. Z.C. Duan and A.M. Hodge: High-temperature nanoindentation: New developments and ongoing challenges. JOM 61, 32 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Schuh.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy

This paper has been accepted as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Packard, C.E., Franke, O., Homer, E.R. et al. Nanoscale strength distribution in amorphous versus crystalline metals. Journal of Materials Research 25, 2251–2263 (2010). https://doi.org/10.1557/jmr.2010.0299

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0299

Navigation