Skip to main content
Log in

First-principles study of the structural and elastic properties of Ti5Si3 with substitutions Zr, V, Nb, and Cr

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The formation enthalpy, electronic structures, and elastic moduli of the intermetallic compound Ti5Si3 with substitutions Zr, V, Nb, and Cr are investigated by using first-principles methods based on the density-functional theory. Our calculation shows that the site occupancy behaviors of alloying elements in Ti5Si3, determined by their atom radius, are consistent with the available experimental observations. Furthermore, using the Voigt-Reuss-Hill (VRH) approximation method, we obtained the bulk modulus B, shear modulus G, and the Young’s modulus E. Among these four substitutions, the V, Nb, and Cr substitutions can improve the ductility of Ti5Si3 effectively, while Zr substitution has little effect on the elastic properties of T15S13. The elastic property variations of Ti5Si3 due to different substitutions are found to be correlated with the Me4d-Me4d antibonding and the strengthened Me-Si bonding in the solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.H. Tang, J.J. Williams, A.J. Thorn, and M. Akinc: High temperature oxidation behavior of Ti5Si3-based intermetallics. Interme-tallics 16, 1118 (2008).

    CAS  Google Scholar 

  2. H.Y. Wang, S.J. Lii, M. Zha, S.T. Li, C. Liu, and Q.C. Jiang: Influence of Cu addition on the self-propagating high-temperature synthesis of Ti5Si3 in Cu-Ti-Si system. Mater. Chem. Phys. 111, 463 (2008).

    CAS  Google Scholar 

  3. R. Mitra: Microstructure and mechanical behavior of reaction hot-pressed titanium silicide and titanium silicide-based alloys and composites. Metall. Mater. Trans. A 29, 1629 (1998).

    Google Scholar 

  4. L. Zhang and J. Wu: Ti5Si3 and Ti5Si3-based alloys: Alloying behavior, microstructure and mechanical property evaluation. Acta Mater. 46, 3535 (1998).

    CAS  Google Scholar 

  5. R. Rosenkranz, G. Frommeyer, and W. Smarsly: Microstructures and properties of high melting point intermetallic Ti5Si3 and TiSi2 compounds. Mater. Sci. Erie.. A 152, 288 (1992).

    Google Scholar 

  6. P.J. Counihan, A. Crawford, and N.N. Thadhani: Influence of dynamic densification on nanostructure formation in Ti5Si3 intermetallic alloy and its bulk properties. Mater. Sci. Em.. A 267, 26 (1999).

    Google Scholar 

  7. J.J. Williams, Y.Y. Ye, M.J. Kramer, K.M. Ho, L. Hong, C.L. Fu, and S.K. Malik: Theoretical calculations and experimental measurements of the structure of Ti5Si3 with interstitial additions. Intermetallics 8, 937 (2000).

    CAS  Google Scholar 

  8. J.H. Schneibel and C.J. Rawn: Thermal expansion anisotropy of ternary titanium silicides based on Ti5Si3. Acta Mater. 52, 3843 (2004).

    CAS  Google Scholar 

  9. E.Y. Gutmanas and I. Gorman: Reactive synthesis of ceramic-matrix composites under pressure. Ceram. Int. 26, 699 (2000).

    CAS  Google Scholar 

  10. M. Ekman and V. Ozolins: Electronic structure and bonding properties of titanium silicides. Phys. Rev. B 57, 4419 (1998).

    CAS  Google Scholar 

  11. T. Kajitani, T. Kawase, K. Yamada, and M. Hirabayashi: Site occupation and local vibration of hydrogen isotopes in hexagonal Ti5Si3H(D)1-x. Trans. Jpn. Inst. Met. 27, 639 (1986).

    CAS  Google Scholar 

  12. A.J. Thorn, V.G. Young, and M. Akinc: Lattice trends in Ti5Si3Zx (Z = B, C, N, O and 0 > x > 1). J. Alloys Compel. 296, 59 (2000).

    Google Scholar 

  13. Y. Chen, J.X. Shang, and Y. Zhang: Bonding characteristics and site occupancies of alloying elements in different Nb5Si3 phases from first principles. Phys. Rev. B 76, 184204 (2007).

    Google Scholar 

  14. C.L. Zhang, P. Han, J.M. Li, and M. Chi: First-principles study of the mechanical properties of NiAl microalloyed by M (Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd). J Phys. D: Appl. Phys. 41, 095410 (2008).

    Google Scholar 

  15. D. Pettifor: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992).

    CAS  Google Scholar 

  16. S.F. Pugh: Relations between the elastic moduli and the plastic properties of poly crystalline pure metals. Philos. Mag. 45, 823 (1954).

    CAS  Google Scholar 

  17. S.H. Jhi, J. Ihm, S.G. Louie, and M.L. Cohen: Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 399, 132 (1999).

    CAS  Google Scholar 

  18. J.Y. Wang and Y.C. Zhou: Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M = Ti, V, Nb, and Cr) ceramics. Phys. Rev. B 69, 214111 (2004).

    Google Scholar 

  19. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne: First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717 (2002).

    CAS  Google Scholar 

  20. D. Vanderbilt: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41, 7892 (1990).

    CAS  Google Scholar 

  21. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671 (1992).

    CAS  Google Scholar 

  22. J.D. Pack and H.J. Monkhorst: “Special points for Brillouin-zone integrations”—A reply. Phys. Rev. B 16, 1748 (1977).

    Google Scholar 

  23. E. Artacho, E. Anglada, O. Dieguez, J.D. Gale, A. Garcia, J. Junquera, R.M. Martin, P. Ordejon, J.M. Pruneda, D. Sanchez-Portal, and J.M. Soler: The SIESTA method: Developments and applicability. J. Phys. Condens. Matter 20, 064208 (2008)

    Google Scholar 

  24. T.H. Fischer and J. Almlof: General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768 (1992).

    CAS  Google Scholar 

  25. W. Voigt: Physical Properties of Crystals, 2nd ed. (Teubner, Leipzig, 1928), 716.

    Google Scholar 

  26. A. Reuss: Calculation of low limit of mixed crystals. Z. Angew. Math. Mech 9, 49 (1929).

    CAS  Google Scholar 

  27. R. Hill: The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65, 349 (1952).

    Google Scholar 

  28. K. Kishida, M. Fujiwara, H. Adachi, K. Tanaka, and H. Inui: Plastic deformation of single crystals of Ti5Si3 with the hexagonal D88 structure. Acta Mater. 58, 846 (2010).

    CAS  Google Scholar 

  29. C. Filippi, D.J. Singh, and C.J. Umrigar: All-electron local-density and generalized-gradient calculations of the structural properties of semiconductors. Phys. Rev. B 50, 14947 (1994).

    CAS  Google Scholar 

  30. L. Zhang and J. Wu: Thermal expansion and elastic moduli of the silicide based intermetallic alloys. Scr. Mater. 38, 307 (1998).

    CAS  Google Scholar 

  31. X. Long and Z. Chong: Electronic structure of titanium silicides. Trans. Nonferrous Met. Soc. China 4, 25 (1994).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Chuan Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, HY., Si, WP., Li, SL. et al. First-principles study of the structural and elastic properties of Ti5Si3 with substitutions Zr, V, Nb, and Cr. Journal of Materials Research 25, 2317–2324 (2010). https://doi.org/10.1557/jmr.2010.0293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0293

Navigation