Skip to main content
Log in

Structural stability and Raman scattering of InN nanowires under high pressure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-pressure in situ angular dispersive x-ray diffraction study on the wurtzite-type InN nanowires has been carried out by means of the image-plate technique and diamond-anvil cell (DAC) up to about 31.8 GPa. The pressure-induced structural transition from the wurtzite to a rocksalt-type phase occurs at about 14.6 GPa, which is slightly higher than the transition pressure of InN bulk materials (~12.1 GPa). The relative volume reduction at the transition point is close to 17.88%, and the bulk modulus B0 is determined through fitting the relative volume-pressure experimental data related to the wurtzite and rocksalt phases to the Birch-Murnaghan equation of states. Moreover, high-pressure Raman scattering for InN nanowires were also investigated in DAC at room temperature. The corresponding structural transition was confirmed by assignment of phonon modes. We calculated the mode Griineisen parameters for the wurtzite and rocksalt phases of InN nanowires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura: III-V nitride based light-emitting devices. Solid State Commun. 102, 237 (1997).

    CAS  Google Scholar 

  2. J.W. Orton and C.T. Foxon: Group III nitride semiconductors for short wavelength light-emitting devices. Ren. Pros. Phys. 61, 1 (1998).

    CAS  Google Scholar 

  3. S.C. Jain, M. Willander, J. Narayan, and R.V. Overstraeten: III-nitrides: Growth, characterization, and properties. J. Appl. Phys. 87, 965 (2000).

    CAS  Google Scholar 

  4. M.A. Haase, J. Qiu, J.M. Depuydt, and H. Cheng: Blue-green laser diodes. Appl. Phys. Lett. 59, 1272 (1991).

    CAS  Google Scholar 

  5. H. Jeon, J. Ding, A.V. Nurmikko, W. Xie, D.C. Grillo, M. Kobayashi, and R.L. Gunshor: Blue-green injection laser diodes in (Zn,Cd)Se/ZnSe quantum wells. Appl. Phys. Lett. 59, 3619(1991)

    CAS  Google Scholar 

  6. J. Gaines, R. Drenten, K.W. Haberen, T. Marshall, P.M. Mensz, and J. Petruzzello: Blue-green injection lasers containing pseudo-morphic Zn1-xMgxSySe1-y cladding layers and operating up to 394 K. Appl. Phys. Lett. 62, 2462 (1993).

    CAS  Google Scholar 

  7. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, and L.F. Eastman: Electron transport in wurtzite indium nitride. J. Appl. Phys. 83, 826 (1998).

    Google Scholar 

  8. B.E. Foutz, S.K. O’Leafy, M.S. Shur, and L.F. Eastman: Transient electron transport in wurtzite GaN, InN, and AlN. J. Appl. Phys. 85, 7727 (1999)

    CAS  Google Scholar 

  9. J. Chen, G. Cheng, E. Stern, M.A. Reed, and Ph. Avouris: Electrically-excited infrared emission from InN transistors. Nano Lett. 7, 2276 (2007).

    CAS  Google Scholar 

  10. M. Ueno, M. Yoshida, A. Onodera, O. Shimomura, and K. Takemura: Stability of the wurtzite-type structure under high pressure: GaN and InN. Phys. Rev. B 49, 14 (1994).

    CAS  Google Scholar 

  11. C. Pinquier, F. Demangeot, J. Frandon, J.W. Pomeroy, M. Kuball, H. Hubel, N.W.A. van Uden, D.J. Dunstan, O. Briot, B. Maleyre, S. Ruffenach, and B. Gil: Raman scattering in hexagonal InN under high pressure. Phys. Rev. B 70, 113202 (2004).

    Google Scholar 

  12. C. Pinquier, F. Demangeot, J. Frandon, J-C. Chervin, A. Polian, B. Couzinet, P. Munsch, O. Briot, S. Ruffenach, B. Gil, and B. Maleyre: Raman scattering study of wurtzite and rocksalt InN under high pressure. Phys. Rev. B 73, 115211 (2006).

    Google Scholar 

  13. V.Yu. Davydov, V.V. Emtsev, I.N. Goncharuk, A.N. Smirnov, V.D. Petrikov, V.V. Mamutin, V.A. Vekshin, S.V. Ivanov, M.B. Smirnov, and T. Inushima: Experimental and theoretical studies of phonons in hexagonal InN. Appl. Phys. Lett. 75, 3297 (1999).

    CAS  Google Scholar 

  14. K. Sarasamak, A.J. Kulkarni, M. Zhou, and S. Limpijumnong: Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and CdSe under loading of different triaxi-alities. Phys. Rev. B 11, 024104 (2008).

    Google Scholar 

  15. A. Bhuiyan, A. Hashimoto, and A. Yamamoto: Indium nitride (InN): A review on growth, characterization, and properties. J. Appl. Phys. 94, 2779 (2003).

    CAS  Google Scholar 

  16. J. Wu, W. Walukiewicz, K.M. Yu, W.J. Auger III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi: Unusual properties of the fundamental band gap of InN. Appl. Phys. Lett. 80, 3967 (2002).

    CAS  Google Scholar 

  17. T.V. Shubina, S.V. Ivanov, V.N. Jmerik, D.D. Solnyshkov, V.A. Vekshin, P.S. Kop’ev, A. Vasson, J. Leymarie, A. Kavokin, H. Amano, K. Shimono, A. Kasic, and B. Monemar: Mie resonances, infrared emission, and the band gap of InN. Phys. Rev. Lett. 92, 117407 (2004).

    CAS  Google Scholar 

  18. Y. Nanishi, Y. Saito, and T. Yamaguchi: RF-molecular-beam-epitaxy growth and properties of InN and related alloys. .Inn. J. Appl. Phys. 42, 2549 (2003).

    CAS  Google Scholar 

  19. S.D. Luo, W.Y. Zhou, Z.X. Zhang, L.F. Liu, X.Y. Dou, J.X. Wang, X.W. Zhao, D.F. Liu, Y. Gao, L. Song, Y.J. Xiang, J.J. Zhou, and S.S. Xie: Synthesis of long indium nitride nanowires with uniform diameters in large quantities. Small 1, 1004 (2005).

    CAS  Google Scholar 

  20. S.D. Luo, W.Y. Zhou, Z.X. Zhang, X.Y. Dou, L.F. Liu, X.W. Zhao, D.F. Liu, L. Song, Y.J. Xiang, J.J. Zhou, and S.S. Xie: Bulk-quantity synthesis of single-crystalline indium nitride nanobelts. Chem. Phys. Lett. 411, 361 (2005).

    CAS  Google Scholar 

  21. S.D. Luo, L.D. Yao, W.G. Chu, J. Shen, Z.X. Zhang, J.B. Li, J.H. Yi, R.C. Yu, W.Y. Zhou, and S.S. Xie: InN/In2O3 peapod nanostructures and conformal conversion templated from InN counterparts via thermal oxidation. Nanotechnoloffy 18, 235605 (2007).

    Google Scholar 

  22. S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, and K. Takemura: Equation of state of the rocksalt phase of III-V nitrides to 72 GPa or higher. J. Phys. Chem. Solids 58, 2093 (1997).

    CAS  Google Scholar 

  23. C.A. Arguello, D.L. Rousseau, and S.P.S. Porto: First-order Raman effect in wurtzite-type crystals. Phys. Rev. 181, 1351 (1969).

    CAS  Google Scholar 

  24. M.P. Halsall, P. Harmer, P.J. Parbrook, and S.J. Henley: Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN. Phys. Rev. B 69, 235207 (2004).

    Google Scholar 

  25. G. Kaczmarczyk, A. Kaschner, S. Reich, A. Hoffmann, C. Thomsen, D.J. As, A.P. Lima, D. Schikora, K. Lischka, R. Averbeck, and H. Riechert: Lattice dynamics of hexagonal and cubic InN: Raman-scattering experiments and calculations. Appl. Phys. Lett. 76, 2122 (2000).

    CAS  Google Scholar 

  26. M. Blackman: On the thermal expansion of solids. Proc. Phys. Soc. London, Sect. B 70, 827 (1957).

    Google Scholar 

  27. W.B. Daniels: Lattice Dynamics, edited by R.F. Wallis (Pergamon Press, Oxford, 1965), p. 273.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L.D., Luo, S.D., Shen, X. et al. Structural stability and Raman scattering of InN nanowires under high pressure. Journal of Materials Research 25, 2330–2335 (2010). https://doi.org/10.1557/jmr.2010.0290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0290

Navigation