Skip to main content

Advertisement

Log in

Anisotropic design of a multilayered biological exoskeleton

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biological materials have developed hierarchical and heterogeneous material microstructures and nanostructures to provide protection against environmental threats that, in turn, provide bioinspired clues to improve human body armor. In this study, we present a multiscale experimental and computational approach to investigate the anisotropic design principles of a ganoid scale of an ancient fish, Polypterus senegalus, which possesses a unique quad-layered structure at the micrometer scale with nanostructured material constituting each layer. The anisotropy of the outermost prismatic ganoine layer was investigated using instrumented nanoindentations and finite element analysis (FEA) simulations. Nanomechanical modeling was carried out to reveal the elastic-plastic mechanical anisotropy of the ganoine composite due to its unique nanostructure. Simulation results for nanoindentation representing ganoine alternatively with isotropic, anisotropic, and discrete material properties are compared to understand the apparent direction-independence of the anisotropic ganoine during indentation. By incorporating the estimated anisotropic mechanical properties of ganoine, microindentation on a quad-layered FEA model that is analogous to penetration biting events (potential threat) was performed and compared with the quad-layered FEA model with isotropic ganoine. The elastic-plastic anisotropy of the outmost ganoine layer enhances the load-dependent penetration resistance of the multilayered armor compared with the isotropic ganoine layer by (i) retaining the effective indentation modulus and hardness properties, (ii) enhancing the transmission of stress and dissipation to the underlying dentin layer, (iii) lowering the ganoine/dentin interfacial stresses and hence reducing any propensity toward delamination, (iv) retaining the suppression of catastrophic radial surface cracking, and favoring localized circumferential cracking, and (v) providing discrete structural pathways (interprism) for circumferential cracks to propagate normal to the surface for easy arrest by the underlying dentin layer and hence containing damage locally. These results indicate the potential to use anisotropy of the individual layers as a means for design optimization of hierarchically structured material systems for dissipative armor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fritsch and C. Hellmich: “Universal” microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials: Micromechanics-based prediction of anisotropic elasticity. J. Theor. Biol. 244, 597 (2007).

    Article  CAS  Google Scholar 

  2. F. Barthelat, C-M Li, C. Comi, and H.D. Espinosa: Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21, 1977 (2006).

    Article  CAS  Google Scholar 

  3. V. Bucur and N.F. Declercq: The anisotropy of biological composites studied with ultrasonic technique. Ultrasonics 44, e829 (2006).

    Article  Google Scholar 

  4. S.P. Nicholls, L.J. Gathercole, A. Keller, and J.S. Shah: Crimping in rat tail tendon collagen: Morphology and transverse mechanical anisotropy. Int. J. Biol. Macromol. 5, 283 (1983).

    Article  CAS  Google Scholar 

  5. S. Vogel: Comparative Biomechanics (Princeton University Press, Princeton, NJ, 2003), p. 175.

    Google Scholar 

  6. S. WooL-Y., W.H. Akeson, and G.F. Jemmott: Measurements of nonhomogeneous, directional mechanical properties of articular cartilage in tension. J. Biomech. 9, 785 (1976).

    Article  Google Scholar 

  7. S.N. White, W. Luo, M.L. Paine, H. Fong, M. Sarikaya, and M.L. Snead: Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel. J. Dent. Res. 80, 321 (2001).

    Article  CAS  Google Scholar 

  8. J.L. Katz and K. Ukraincik: On the anisotropic elastic properties of hydroxyapatite. J. Biomech. 4, 221 (1971).

    Article  CAS  Google Scholar 

  9. L. Ng, A.J. Grodzinsky, J.D. Sandy, A.H.K. Plaas, and C. Ortiz: Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143, 242 (2003).

    Article  CAS  Google Scholar 

  10. L. Bozec, van der G. Heijden, and M. Horton: Collagen fibrils: Nanoscale ropes. Biophys. J. 92, 70 (2007).

    Article  CAS  Google Scholar 

  11. K.A. Dill: Dominant forces in protein folding. Biochemistry 29, 7133 (1990).

    Article  CAS  Google Scholar 

  12. D.A. Tirrel: Hierarchical Structures in Biology as a Guide for New Materials Technology (National Academic Press, Washington, DC, 1994).

    Google Scholar 

  13. H.A. Lowenstam and S. Weiner: On Biomineralization (Oxford University Press, New York, 1989).

    Book  Google Scholar 

  14. S. Weiner, L. Addadi, and H.D. Wagner: Materials design in biology. Mater. Sci. Em., C11, 1 (2000).

    Google Scholar 

  15. S.A. Wainwright: Stress and design in bivalved mollusc shell. Nature 224, 777 (1969).

    Article  Google Scholar 

  16. A. Al-Sawalmih, C.H. Li, S. Siegel, H. Fabritius, S.B. Yi, D. Raabe, P. Fratzl, and O. Paris: Microtexture and chitin/calcite orientation relationship in the mineralized exoskeleton of the American lobster. Adv. Funct. Mater. 18, 3307 (2008).

    Article  CAS  Google Scholar 

  17. D. Chateigner, C. Hedegaard, and H-R Wenke: Mollusc shell microstructures and crystallographic textures. J. Struct. Geol. 22, 1723 (2000).

    Article  Google Scholar 

  18. A.H Parsons: Structure of the egg shell. Poult. Sci. 61, 2013 (1982).

    Article  Google Scholar 

  19. A.B. Rodriguez-Navarro, C. CabraldeMelo, N. Batista, N. Morimoto, P. Alvarez-Lloret, M. Ortega-Huertas, V.M. Fuenzalida, J.I. Arias, P. Wiff, and J.L. Arias: Microstructure and crystallographic-texture of giant barnacle (Austromegabalanus psittacus) shell. J. Struct. Biol. 156, 355 (2006).

    Article  CAS  Google Scholar 

  20. F.C.M. Driessens and R.M.H. Verbeeck: Biominerals (CRC Press, Boca Raton, FL, 1990), p. 163.

    Google Scholar 

  21. B.J.F. Bruet, J.H. Song, M.C. Boyce, and C. Ortiz: Materials design principles of ancient fish armor. Nat. Mater. 7, 748 (2008).

    Article  CAS  Google Scholar 

  22. J. Daget, M. Gayet, F.J. Meunier, and J-Y Sire: Major discoveries on the dermal skeleton of fossil and recent polypteriforms: A review. Fish Fish. 2, 113 (2001).

    Article  Google Scholar 

  23. F.J. Meunier: Histological studies of the dermal skeleton in Poly-pteridae. Arch. Zool. Exp. Gén. 122, 279 (1980).

    Google Scholar 

  24. T. Ørvig: Phylogeny of tooth tissues: Evolution of some calcified tissues in early vertebrates, in Structural and Chemical Organization of Teeth, Vol. 1, edited by A.E.W. Miles (Academic Press, New York & London, 1967), p. 45.

    Google Scholar 

  25. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  26. M. Danielsson, D.M. Parks, and M.C. Boyce: Three-dimensional micromechanical modeling of voided polymeric materials. J. Mech. Phys. Solids 50, 351 (2002).

    Article  CAS  Google Scholar 

  27. M. Danielsson, D.M. Parks, and M.C. Boyce: Micromechanics, macromechanics and constitutive modeling of the elasto-viscoplastic deformation of rubber-toughened glassy polymers. J. Mech. Phys. Solids 55, 533 (2007).

    Article  CAS  Google Scholar 

  28. W.T. Lee, M.T. Dove, and E.K.H. Salje: Surface relaxations in hydroxyapatite. J. Phys. Condens. Matter 12, 9829 (2000).

    Article  CAS  Google Scholar 

  29. A.S. Posner and F. Betts: Molecular control of tissue mineralization, in Chemistry and Biology of Mineralized Connective tissues, edited by A. Veis (Elsevier, Amsterdam, 1981), pp. 257–266.

  30. Leventouri Th.: Synthetic and biological hydroxyapatites: Crystal structure questions. Biomaterials 27, 3339 (2006).

    Article  Google Scholar 

  31. C. Rey, C. Combes, C. Drouet, H. Sfihi, and A. Barroug: Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials. Mater. Sci. Em., C27, 198 (2007).

    CAS  Google Scholar 

  32. S. Weiner: Transient precursor strategy in mineral formation of bone. Bone 39, 431 (2006).

    Article  CAS  Google Scholar 

  33. B. Viswannath, R. Raghavanb, U. Ramamurtyb, and N. Ravishankar: Mechanical properties and anisotropy in hydroxyapatite single crystals. Scr. Mater. 57, 361 (2007).

    Article  Google Scholar 

  34. I.R. Spears: A three-dimensional finite element model of prismatic enamel: A re-appraisal of the data on the Young’s modulus of enamel. J. Dent. Res. 76, 1690 (1997).

    Article  CAS  Google Scholar 

  35. D.R. Katti, K.S. Katti, J.M. Sopp, and M. Sarikaya: 3D finite element modeling of mechanical response in nacre-based hybrid nanocomposites. Comput. Theor. Polym. Sci. 11, 397 (2001).

    Article  CAS  Google Scholar 

  36. R. Jayachandran, M.C. Boyce, and A.S. Argon: Design of multilayer polymeric coatings for indentation resistance. J. Comput. Aided Mater. Des. 2, 155 (1995).

    Google Scholar 

  37. M.J. Markey, R.P. Main, and C.R. Marshall: Vivo cranial suture function and suture morphology in the extant fish Polypterus: Implications for inferring skull function in living and fossil fish. J. Exp. Biol. 209, 2085 (2006).

    Article  Google Scholar 

  38. S. Habelitz, S.J. Marshall, G.W. Marshall, and M. Balooch: Mechanical properties of human dental enamel on the nanometre scale. Arch. Oral Biol. 46, 173 (2001).

    Article  CAS  Google Scholar 

  39. I.R. Spears, van R. Noort, R.H. Crompton, G.E. Cardew, and I.C. Howard: The effects of enamel anisotropy on the distribution of stress in a tooth. J. Dent. Res. 72, 1526 (1993).

    Article  CAS  Google Scholar 

  40. R. Hassan, A.A. Caputo, and R.F. Bunshaw: Fracture toughness of human enamel. J. Dent. Res. 60, 820 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Juha, S., Ortiz, C. et al. Anisotropic design of a multilayered biological exoskeleton. Journal of Materials Research 24, 3477–3494 (2009). https://doi.org/10.1557/jmr.2009.0443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0443

Navigation